Provisioning Memory and Checking Garbage Collection

Overview
Infrequent garbage collection can lead to issues that are often misdiagnosed,
as well as avoidable spikes in memory use. When provisioning or upgrading memory for your Java app, you can use these Datadog dashboards to help identify this problem.

We have one Datadog dashboard for each type of Java garbage collection:

· Parallel Scavenge
· G1
· CMS

Basics
Your Java application runs on the Java Virtual Machine (JVM). It is provisioned with a certain amount of memory, known as Heap.

The Heap contains Eden, Survivor Space, and Tenured Space AKA Old Generation. Eden and Survivor Space are also often called Young Generation.

	[image:]

	Above graphic from https://dzone.com/articles/understanding-the-java-memory-model-and-the-garbag

Memory flows through the Heap as follows:

· The Eden space is where objects first appear when they're created, unless they are very large. If they are very large they may be allocated directly into Old Gen.
· All objects in Eden stay until the first garbage collection. Note that the java application can continue operating during this garbage collection.
· If an object in Eden isn’t get collected in the first cycle, it goes into the Survivor space.
· If the object remains uncollected in Survivor space for a couple of cycles then it goes to the Tenured Space, AKA Old Gen.
· When the size available in Old Gen reaches a set threshold, a full garbage collection will occur.
· This full garbage collection stops all action.

More garbage to collect at once, greater negative impact
When a full garbage collection occurs all other app actions are paused. Actions like opening a connection, responding to requests, and making requests will not occur. In a healthy application the garbage collection should take microseconds or milliseconds. But in an application instance that has saturated its Heap and reduced available memory, a full pause for garbage collection could take seconds or even minutes.

This can cause cascading issues like network timeouts while downstream applications wait for responses. Investigators can then look for network connection issues or other red herrings and not see the underlying issue.

The smaller the garbage collection, the shorter the pause. As a result we want more frequent but smaller garbage collections, rather than fewer but larger ones.

Garbage creation can and should also be reduced at the source, by designing our code to release objects and clean up references as soon as possible. But after the code is complete there are many factors outside of developer control. For example if unexpected user traffic is saturating your instances and a slowdown occurs in a dependent service, the user requests will take longer to finish. Created objects will accumulate, and the burden on Old Gen could outpace the JVM’s ability to find objects to free up. This will result in memory saturation.

These situations can all be eased by increasing the amount of Heap, increasing the number of available instances, and addressing latent service calls. But lessening the most time-consuming garbage collection will ease all these other issues.

New objects and references
A JVM will also periodically create new objects like integer objects, arrays, maps or class instances. The JVM will create an instance of them in Young Gen first. If these references are freed after a few cycles, the JVM will clean them up and there will never be a need to tenure them. But if after many cycles there are still references to these objects which are still being used, they'll be promoted to Old Gen for longer term storage.

Checking garbage collection
These graphs below correspond to different areas of JVM memory. Some memory items live on Heap, and some live off Heap. Items living on Heap include those in Eden, Young Gen space and Old Gen. A useful time range for examining the effectiveness of your current garbage collection can be a 1-week lookback.

[image: A graph with blue and yellow lines

Description automatically generated]

Leakage, or just slow growth?
Another thing you want to look for in Old Gen is slow growth or leakage. That can often show as a sawtooth pattern—the usage grows until a restart or deploy happens, and then drops back to grow again. You can see a suggestion of this in a recurring pattern:

[image: A graph of a graph

Description automatically generated with medium confidence]

Slow and steady growth over months is less of a concern. That can be natural growth from the number of users, or the artifacts themselves growing over time as more information is added.

Garbage collection time
The percentage at which garbage collection will be triggered for Old Gen is tunable. It's done either as a percentage or a flat amount. You can set your JVM to trigger the full garbage collection when it hits 3 gigabytes, for example.

Finding an optimum time to perform the collection can be tricky. It means balancing between stopping the world too often, and waiting too long between collections. Fortunately the default setting for when to trigger garbage collection is sufficient for most applications.
image1.tiff

image2.tiff
PS Eden Space

image3.tiff
oldgen usage max by host/instance 3

