Amazon DynamoDB Developer Guide

NoSQL Workbench for DynamoDB

NoSQL Workbench for Amazon DynamoDB is a cross-platform, client-side GUI application that
you can use for modern database development and operations. It's available for Windows, macOS,
and Linux. NoSQL Workbench is a visual development tool that provides data modeling, data
visualization, and query development features to help you design, create, query, and manage
DynamoDB tables. NoSQL Workbench now includes DynamoDB local as an optional part of the
installation process, which makes it easier to model your data in DynamoDB local. To learn more
about DynamoDB local and its requirements, see Setting up DynamoDB local (downloadable
version) .

Data modeling

With NoSQL Workbench for DynamoDB, you can build new data models from, or design models
based on, existing data models that satisfy your application's data access patterns. You can also
import and export the designed data model at the end of the process. For more information,
see Building data models with NoSQL Workbench.

Data visualization

The data model visualizer provides a canvas where you can map queries and visualize the access
patterns (facets) of the application without having to write code. Every facet corresponds to a
different access pattern in DynamoDB. You can autogenerate sample data for use in your data
model. For more information, see Visualizing data access patterns.

Operation building

NoSQL Workbench provides a rich graphical user interface for you to develop and test queries.
You can use the operation builder to view, explore, and query live datasets. The structured
operation builder supports projection expression, condition expression, and generates sample
code in multiple languages. You can directly clone tables from one Amazon DynamoDB
account to another one in different Regions. You can also directly clone tables between
DynamoDB local and an Amazon DynamoDB account for faster copying of your table’s key
schema (and optionally GSI schema and items) between your development environments. For
more information, see Exploring datasets and building operations with NoSQL Workbench.

The video below details concepts of data modeling with NoSQL Workbench.

Topics

API Version 2012-08-10 1451

Amazon DynamoDB Developer Guide

» Download NoSQL Workbench for DynamoDB

« Install NoSQL Workbench for DynamoDB

» Building data models with NoSQL Workbench

 Visualizing data access patterns

» Exploring datasets and building operations with NoSQL Workbench

« Sample data models for NoSQL Workbench

» Release history for NoSQL Workbench

Download NoSQL Workbench for DynamoDB

Follow these instructions to download NoSQL Workbench and DynamoDB local* for Amazon
DynamoDB.

Prerequisites

There are two prerequisite pieces of software required for Ubuntu installs: libfuse2 and curl.

libfuse2

As of Ubuntu 22.04, libfuse2 is no longer installed by default. To solve this, run sudo add-
apt-repository universe && sudo apt install libfuse2 to install for the newest
Ubuntu version.

curl
Update Ubuntu, run sudo apt update && sudo apt upgrade

Next, install cURL, execute: sudo apt install curl

To download NoSQL Workbench and DynamoDB local

1. Download the appropriate version of NoSQL Workbench for your operating system.

Operating system Download link

macOS (Intel)** Download for macOS (Intel)

Download API Version 2012-08-10 1452

https://github.com/AppImage/AppImageKit/wiki/FUSE
https://github.com/AppImage/AppImageKit/wiki/FUSE
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench-x64.dmg

Amazon DynamoDB Developer Guide

Operating system Download link

macOS (Apple silicon) Download for macOS (Apple silicon)
Windows Download for Windows

Linux*** Download for Linux

* NoSQL Workbench includes DynamoDB local as an optional part of the installation process.

** If a warning message appears when you try to open NoSQL Workbench stating that the app
isn't registered with Apple by an identified developer, do the following:

1. Locate the app and then open it.

2. Control+click the app icon, then choose Open from the shortcut menu.

This saves the app as an exception to your security settings. Open the app by double-
clicking it just as you can open any registered app.

*** NoSQL Workbench supports Ubuntu 12.04, Fedora 21, and Debian 8, or any newer versions
of these Linux distributions.

2. Start the application that you downloaded, and then follow the steps in Install NoSQL
Workbench.

(® Note

Java Runtime Environment (JRE) version 11.x or newer is required for running DynamoDB
local.

Install NoSQL Workbench for DynamoDB

Follow these steps to install NoSQL Workbench and DynamoDB local on a supported platform.

Install API Version 2012-08-10 1453

https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench-arm64.dmg
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench.exe
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench.AppImage

Amazon DynamoDB Developer Guide

Windows
To install NoSQL Workbench on Windows

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

2. Choose Next to continue the setup, and then choose Next on the following screen.

3. By default, the Install DynamoDB Local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing the check box for this option will skip the installation of DynamoDB
local, and the installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Next.

(® Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB Local check box, choose Next, and skip to step 6. You can download

DynamoDB local separately as a standalone installation at a later time. For more

information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1454

Amazon DynamoDB Developer Guide

m Setup — -

Installation folder aws

Install DynameDB Local along with No5CL Workbench?

Install DynameDB Local
Specify the folder where you want to install the software.

Select destination sers\admin\Desktop'testing-final | &

< Back Mext = Cancel

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number, choose Next.

5. Choose Next to begin setup.
6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /programs/DynamoDBWorkbench/.

macOS
To install NoSQL Workbench on macOS

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

Install API Version 2012-08-10 1455

Amazon DynamoDB Developer Guide

2. Choose Next to continue the setup, and then choose Next on the following screen.

3. By default, the Install DynamoDB local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing this option will skip the installation of DynamoDB local, and the
installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Next.

(® Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB local check box, choose Next, and skip to step 6. You can download
DynamoDB local separately as a standalone installation at a later time. For more
information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1456

Amazon DynamoDB Developer Guide

-

® - Setup

Installation folder adWs

Install DynamoDB Local along with NoSQL Workbench?

Install DynamoDB Local

Specify the folder where you want to install the software.

Select destination [/Users/tkarna/Desktop/Test—ﬁnaI [e

Cancel < Back Next >

| . d

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number, choose Next.

5. Choose Next to begin setup.
6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /Applications/
DynamoDBWorkbench/.

@ Note

NoSQL Workbench for macOS performs auto-updates. To get notification about
updates, enable notification access to NoSQL Workbench in System Preferences >
Notifications.

Install API Version 2012-08-10 1457

Amazon DynamoDB Developer Guide

Linux
To install NoSQL Workbench on Linux

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

2. Choose Forward to continue the setup, and choose Forward on the following screen.

3. By default, the Install DynamoDB local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing this option will skip the installation of DynamoDB local, and the
installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Forward.

(® Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB local check box, choose Forward, and skip to step 6. You can download
DynamoDB local separately as a standalone installation at a later time. For more
information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1458

Amazon DynamoDB Developer Guide

Setup

Installation folder dws

Install DynamoDB Local along with NoSQL Workbench?
Install DynamoDB Local

Specify the folder where you want to install the software.

Select destination ‘ omeftkarna/DynamoDB

I

VMware InstallBuilder

4@ Back B Forward € cancel

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number entered, choose Forward.

5. Choose Forward to begin setup.
6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /usr/local/programs/
DynamoDBWorkbench/.

To start an Applmage on Linux

1. Make the Applmage file executable:

chmod +x noSQL-workbench-linux.Applmage

Install API Version 2012-08-10 1459

Amazon DynamoDB Developer Guide

Replace noSQL-workbench-linux.Applmage with the actual file name of the Applmage you
downloaded.

2. Run the Applmage:
./noSQL-workbench-linux.Applmage

This will launch the NoSQL Workbench application.

(® Note

Depending on your Linux distribution, you may need to install additional dependencies
for the Applmage to run properly. If you encounter any issues, refer to the
documentation provided by the Applmage developers or seek support from the
community.

(® Note

If you opted to install DynamoDB local as part of the installation of NoSQL Workbench,
DynamoDB local will be preconfigured with default options. To edit the default options,
modify the DDBLocalStart script located in the /resources/DDBLocal_Scripts/ directory.

You can find this in the path that you provided during installation. To learn more about
DynamoDB local options, see DynamoDB local usage notes .

If you opted to install DynamoDB local as part of the NoSQL Workbench installation, you will have
access to a toggle to enable and disable DynamoDB local as shown in the following image.

Install API Version 2012-08-10 1460

Amazon DynamoDB Developer Guide

aWS nosaL Workbench

B2 AWS database catalog

Amazon DynamoDB

Emall us &

@ oo8 Local Server

«

Building data models with NoSQL Workbench

You can use the data modeler tool in NoSQL Workbench for Amazon DynamoDB to build new data
models, or to design models based on existing data models that satisfy your applications' data
access patterns. The data modeler includes a few sample data models to help you get started.

Topics

Creating a new data model

Importing an existing data model

Exporting a data model

Editing an existing data model

Creating a new data model

Follow these steps to create a new data model in Amazon DynamoDB using NoSQL Workbench.

Data modeler APl Version 2012-08-10 1461

Amazon DynamoDB Developer Guide

To create a new data model

1. Open NoSQL Workbench, and in the navigation pane on the left side, choose the Data
modeler icon.

aW§ NoSQL Workbench
S~——

AWS database catalog

Data modeler

® Visualizer

Operation builder

2. Choose Create data model.

a\VV/Sj NoSQL Workbench Data modeler

mm
sm AWS database catalog Data model ©

A Amazon DynamoDB

Create data model has two choices: Make model from scratch and Start from a template.

Creating a new model API Version 2012-08-10 1462

Amazon DynamoDB Developer Guide

Create data model for Amazon DynamoDB

Make model from scratch Start from a template

Start with tables, GSIs and attributes to help guide you without losing
any freedom to change everything.

AWS Discussion Forum Data Model

This data model represents Amazon DynamoDB
schema for AWS discussion forums, an example of an
application for discussion forums or message
boards....

Bookmarks Data Model

This model is about storing URL bookmarks for
customers. Even if the use case is relatively simple,
there are still many interesting...

Selecting this option means you will have to create all Employee Data Model

tables, GSls, attributes and elements yourself. This data model represents an Amazon DynamoDB
schema for an employee database application. The
important access patterns facilitated by this data...

More templates

Cancel

Make model from scratch

To make a model from scratch, enter a name, author, and description for the data model.
Choose Create when finished.

Create data model for Amazon DynamoDB

*Name
Author

Description

V

Back Cancel

Creating a new model API Version 2012-08-10 1463

Amazon DynamoDB Developer Guide

Start from a template

Starting from a template lets you choose a sample model to start from. Choose More
templates to see more template options. Choose Select for the template that you want to
use.

Enter a data model name, author, and description for the template you selected. You can
choose between Schema only and Schema with sample data.

» Schema only creates an empty data model with the primary key (partition and sort key)
and other attributes.

« Schema with sample data will create a data model complete with sample data for the
primary key (partition and sort key) and other attributes.

When this information is complete, choose Create to create the model.

Create data model for Amazon DynamoDB

Data Model New model From template

Template Ski Resort Data Model
* Save as
Author

Description

Sample Data Schema only

Schema with sample data will create a data model complete with sample data for the primary keys (partition key and/or sort key)
and other attributes.

Back Cancel

3. With the model created, choose Add table.

Creating a new model API Version 2012-08-10 1464

Amazon DynamoDB Developer Guide

AWS NosaL Workbench Data modeler

AWS database catalog Data model @

Music Library Data Model

Amazon DynamoDB

Tables ©

Visualizer

For more information about tables, see Working with tables in DynamoDB.

4. Specify the following:

« Table name - Enter a unique name for the table.

« Partition key — Enter a partition key name, and specify its type. Optionally, you can also
select a more granular data type format for sample data generation.

« If you want to add a sort key:
1. Select Add sort key.

2. Specify the sort key name and its type. Optionally, you can select a more granular data
type format for sample data generation.

(@ Note

To learn more about primary key design, designing and using partition keys effectively,
and using sort keys, see the following:

« Primary key

» Best practices for designing and using partition keys effectively in DynamoDB

» Best practices for using sort keys to organize data in DynamoDB

5. To add other attributes, do the following for each attribute:

1. Choose Add an attribute.

Creating a new model API Version 2012-08-10 1465

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html

Amazon DynamoDB Developer Guide

2. Specify the attribute name and its type. Optionally, you can select a more granular data
type format for sample data generation.

6. Add a facet:

You can optionally add a facet. A facet is a virtual construct in NoSQL Workbench. It is not a
functional construct in DynamoDB itself.

(® Note

Facets in NoSQL Workbench help you visualize an application's different data access
patterns for Amazon DynamoDB with only a subset of the data in a table. To learn
more about facets, see Viewing data access patterns.

To add a facet,

o Select Add facets.
e Choose Add facet.

« Specify the following:
« The Facet name.
« A Partition key alias to help distinguish this facet view.
« A Sort key alias.

o Choose the Other attributes that are part of this facet.

Creating a new model API Version 2012-08-10 1466

Amazon DynamoDB Developer Guide

Choose Add facet.

Add facet

Facetname SongDetails

Partition key alias ~ Songld

Sort key alias Metadata

Other attributes

Cancel

Repeat this step if you want to add more facets.

7. If you want to add a global secondary index, choose Add global secondary index.

Specify the Global secondary index name, Partition key attribute, and Projection type.

Creating a new model API Version 2012-08-10 1467

Amazon DynamoDB Developer Guide

Global secondary indexes

Global secondary =~ Name
index name
Partition key = FirstName @
Add sort key @
Sort key LastName
Projectiontype =~ ALL @

For more information about working with global secondary indexes in DynamoDB, see Global
secondary indexes.

8. Save the edits to your table settings..

For more information about the CreateTable API operation, see CreateTable in the Amazon
DynamoDB API Reference.

Importing an existing data model

You can use NoSQL Workbench for Amazon DynamoDB to build a data model by importing and
modifying an existing model. You can import data models in either NoSQL Workbench model
format or in AWS CloudFormation JSON template format.

To import a data model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler icon.

Importing an existing model API Version 2012-08-10 1468

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

aW§ NoSQL Workbench
Cree—

AWS database catalog

Data modeler

® Visualizer

Operation builder

2. Hover your pointer over Import data model.
dWS NosQL Workbench Data modeler

| 1]
sm AWS database catalog Data model ©

Music Library Data Model

A Amazon DynamoDB

In the dropdown list, choose whether the model you want to import is in NoSQL Workbench
model format or CloudFormation JSON template format. If you have an existing data model
open in NoSQL Workbench, you'll have the option to import a CloudFormation template into
the current model.

Importing an existing model API Version 2012-08-10 1469

Amazon DynamoDB Developer Guide

Import NoSQL Workbench model JSON
Import CloudFormation template JSON

Import CloudFormation template JSON into current model

3. Choose a model to import.

® Open X
— v 1 > ThisPC > OSDisk (C:) > models v) | Search models P
Organize ~ New folder =~ M @
~ Name Date modified Type Size
3 Quick access
i) AWSDiscussionForumModel.json 8/23/2019 12:40 PM JSON file 8 KB
= Documents =
o EmployeeDataModel.json 8/23/2019 1240 PM JSON file 5KB
¥ Downloads — o . v i
© MusicLibraryModel.json 8/23/2019 12:40 PM JSON file 6 KB
i Pictures “3 RetailOrderFulfillmentModeljson 8/23/2019 1240 PM JSON file 20 KB
@ OneDrive
5 This PC
¥ Network N >
File name: |EmployeeDataModel.json v ‘ All Files (**) v

4. If the model you're importing is in CloudFormation template format, you'll see a list of
tables to be imported and have an opportunity to specify a data model name, author, and
description.

Importing an existing model API Version 2012-08-10 1470

Amazon DynamoDB Developer Guide

Create data model for Amazon DynamoDB

Only CloudFormation resources related to DynamoDB: tables and any related application auto scaling,
€ will be imported. Some fields within these resources are not supported by NoSQL Workbench and will
also not be imported, including LocalSecondarylndexes, RoleARN, and PolicyName.

Successfully imported tables (1)

& Employee

Data model information

* Name

Author

Description

Cancel

Exporting a data model

After you create a data model using NoSQL Workbench for Amazon DynamoDB, you can save
and export the model in either NoSQL Workbench model format or AWS CloudFormation JSON

template format.

To export a data model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler icon.

Exporting a model API Version 2012-08-10 1471

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

aW§ NoSQL Workbench
S~——

AWS database catalog

Data modeler

Visualizer

Operation builder

2. Hover your pointer over Export data model.

a\VV/Sj NoSQL Workbench Data modeler

mm
sm AWS database catalog Data model ©

Music Library Data Model

A Amazon DynamoDB

In the dropdown list, choose whether to export your data model in NoSQL Workbench model
format or CloudFormation JSON template format.

@ \Visualize
Export Workbench JSON

Export CloudFormation JSON

3. Choose a location to save your model.

Exporting a model API Version 2012-08-10 1472

Amazon DynamoDB

Developer Guide

blob:file:///208e910b-b0d5-4aff-b972-622a29b9f64a X
&« v 1 > This PC > OSDisk (C:) > models v O Search models P
Organize * New folder =+ @
5| Documents # * Name Date modified Type Size
¥ Downloads # “3 AWSDiscussionForumModel.json 8/23/2019 12240 PM JSON file 8 KB
&= Pictures ol “3 EmployeeDataModel json 8/23/2019 12:40 PM JSON file 5KB
I Desktop 2 MusicLibraryModeljson 8/23/2019 12:40 PM JSON file 6 KB
“3 RetailOrderfulfillmentModel json 8/23/2019 12:40 PM JSON file 20 KB
@ OneDrive
@ This PC
¥ Netwark g & >
File name: | Employee Data Model.json v
v

Save as type: |All Files (*.%)

A~ Hide Folders

Editing an existing data model

To edit an existing model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler

button.

Editing an existing model

API Version 2012-08-10 1473

Amazon DynamoDB

Developer Guide

aW§ NoSQL Workbench
N —

AWS database catalog

Data modeler

® Visualizer

Operation builder

2. Select the data model and choose the table that you want to edit. Choose Edit model

Data mOdEIer [TABLE] Songs

a8 AWS database catalog

Data model © 3
Attribute view JSON view of data model

A Amazon DynamoDB Music Library Data Model

» B W Songs

@ Visualizer Tables © Primary key attributes @

Attribute name Attribute type Key type

£ Operation builder

EB Songs [

3. Make the needed edits, and then choose Save edits.

To manually edit an existing model and add a facet

1. Export your model. For more information, see Exporting a data model.

2. Open the exported file in an editor.

3. Locate the DataModel Object for the table that you want to create a facet for.

Add a TableFacets array representing all the facets for the table.

Sample data format @

For each facet, add an object to the TableFacets array. Each array element has the following

properties:

« FacetName - A name for your facet. This value must be unique across the model.

Editing an existing model

APl Version 2012-08-10 1474

Amazon DynamoDB

Developer Guide

« PartitionKeyAlias - A friendly name for the table's partition key. This alias is displayed
when you view the facet in NoSQL Workbench.

« SortKeyAlias - A friendly name for the table's sort key. This alias is displayed when you
view the facet in NoSQL Workbench. This property is not needed if the table has no sort key

defined.

« NonKeyAttributes - An array of attribute names that are needed for the access pattern.
These names must map to the attribute names that are defined for the table.

"ModelName": "Music Library Data Model",

"DataModel": [
{

"TableName": "Songs"

"KeyAttributes": {
"PartitionKey": {

"AttributeName":
"AttributeType":

iy
"SortKey": {

"AttributeName":
"AttributeType":

}
1,
"NonKeyAttributes":

{

"AttributeName":
"AttributeType":

iy
{

"AttributeName":
"AttributeType":

iy
{

"AttributeName":
"AttributeType":

iy
{

"AttributeName":
"AttributeType":

iy
{

IlIdll’
IISII

"Metadata",

IISII

"DownloadMonth",

IISII

"TotalDownloadsInMonth",
IISII

"Title",
IISII

"Artist",
ngn

Editing an existing model

API Version 2012-08-10 1475

Amazon DynamoDB Developer Guide

"AttributeName": "TotalDownloads",
"AttributeType": "S"

},
{
"AttributeName": "DownloadTimestamp",
"AttributeType": "S"
}
1,
"TableFacets": [
{
"FacetName": "SongDetails",
"KeyAttributeAlias": {
"PartitionKeyAlias": "SongId",
"SortKeyAlias": "Metadata"
},
"NonKeyAttributes": [
"Title",
"Artist",
"TotalDownloads"
]
},
{
"FacetName": "Downloads",
"KeyAttributeAlias": {
"PartitionKeyAlias": "SongId",
"SortKeyAlias": "Metadata"
},
"NonKeyAttributes": [
"DownloadTimestamp"
]
}
]

4. You can now import the modified model into NoSQL Workbench. For more information, see
Importing an existing data model.

Editing an existing model API Version 2012-08-10 1476

Amazon DynamoDB Developer Guide

Visualizing data access patterns

You can use the visualizer tool in NoSQL Workbench for Amazon DynamoDB to map queries and
visualize different access patterns (known as facets) of an application. Every facet corresponds to
a different access pattern in DynamoDB. You can also manually add data to your data model or
import data from MySQL.

Topics

« Adding sample data to a data model

Importing sample data from a CSV file

Viewing data access patterns

Viewing all tables in a data model using aggregate view

Committing a data model to DynamoDB

Adding sample data to a data model

By adding sample data to your model, you can display data when visualizing the model and its
various data access patterns, or facets.

There are two ways to add sample data. One is using our sample data auto generation tool. The
other is adding data one at a time.

Follow these steps to add sample data to a data model using NoSQL Workbench for Amazon
DynamoDB.

To auto generate sample data

Auto generating sample data helps you generate between 1 to 5000 rows of data for immediate
use. You can specify a granular sample data type to create realistic data based on your design

and testing needs. To utilize the capability to generate realistic data, you need to specify the
sample data type format for your attributes in the Data modeler. See Creating a new data modelfor
specifying sample data type formats.

1. In the navigation pane on the left side, choose the visualizer icon.

Data visualizer API Version 2012-08-10 1477

Amazon DynamoDB Developer Guide

awg NoSQL Workbench
N —

AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

2. Inthe visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Add sample data.

[Table] Songs
Configure sample data
Songs GSI: DownloadsByMonth
Add sample data
Primary key Edit data
Attributes)
Partition key: Id Sort key: Metadata Import CSV file

4. Enter the number or items of sample data that you would like to generate, then select
Confirm.

To add sample data one at a time

1. In the navigation pane on the left side, choose the visualizer icon.

Adding sample data API Version 2012-08-10 1478

Amazon DynamoDB Developer Guide

awg NoSQL Workbench
N —

AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

2. Inthe visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Edit data.

[Table] Songs
Configure sample data
Songs GSI: DownloadsByMonth
Add sample data
Primary key Edit data
Attributes)
Partition key: Id Sort key: Metadata Import CSV file

4. Choose Add new row. Enter the sample data into the empty text boxes, and choose Add new
row again to add additional rows. When done choose Save changes.

To delete sample data

1. In the navigation pane on the left side, choose the visualizer icon.

Adding sample data API Version 2012-08-10 1479

Amazon DynamoDB Developer Guide

aW§ NoSQL Workbench
N —

B8 AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

2. Inthe visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Edit data.

[Table] Songs

Configure sample data
Songs GSI: DownloadsByMonth

Add sample data

Primary key Edit data
Attributes

Partition key: Id Sort key: Metadata Import CSV file

4. Select the delete icon next to each row of data you want to delete.

Importing sample data from a CSV file

If you have preexisting sample data in a CSV file, you can import it into NoSQL Workbench. This
enables you to quickly populate your model with sample data without having to enter it line by
line.

The column names in the CSV file must match the attribute names in your data model, but
they do not need to be in the same order. For example, if your data model has attributes called
LoginAlias, FirstName, and LastName, your CSV columns could be LastName, FirstName,
and LoginAlias.

Data import from a CSV file is limited to 150 rows at a time.

Importing from CSV API Version 2012-08-10 1480

Amazon DynamoDB Developer Guide

To import data from a CSV file into NoSQL Workbench

1. Inthe navigation pane on the left side, choose the visualizer icon.

aW§ NoSQL Workbench
SS~—

B8 AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

In the visualizer, select the data model and choose the table.
Choose the Action drop down, and select Edit Data.

Choose the Action drop down again, and select Import CSV file.

ik W

Select your CSV file and choose Open. The data in the CSV file will be appended to your table.

@ Note

If your CSV file contains one or more rows that have the same keys as items already

in your table, you will have the option of overwriting the existing items or appending
them to the end of the table. If you choose to append the items, the suffix "-Copy" will
be added to each duplicate item's key to differentiate the duplicate items from the
items that were already in the table.

Viewing data access patterns

In NoSQL Workbench, facets represent an application's different data access patterns for
Amazon DynamoDB. Facets can help you visualize your data model when multiple data types are
represented by a sort key. Facets give you a way to view a subset of the data in a table, without

Facets API Version 2012-08-10 1481

Amazon DynamoDB Developer Guide

having to see records that don't meet the constraints of the facet. Facets are considered a visual
data modeling tool, and don't exist as a usable construct in DynamoDB, as they are purely an aid to
modeling of access patterns.

To see an example of facets, you can import one of our sample data models with facets as part of
the data model template.

Import sample data model

1. On the left, choose Amazon DynamoDB.

2. In the Sample data models section, hover your pointer over Music Library Data Model and
choose Import.

Inc

adWS nosqL Workbench
~

Amazon Web Services,
Employee Data Model May 31, 2022, 01:02 PM

B2 AWS database catalog Inc.

Music Bobby May 31, 2022, 12:57 PM

Data modeler

Sample data models

Visualizer

Data model name Skill level
Operation builder

AWS Discussion Forum Data Model Introductory
Documentation &'

Bookmarks Data Model Introductory
Email us

Employee Data Model Introductory

Ski Resort Data Model Introductory

Credit Card Offers Data Model Advanced

Music Library Data Model Advanced m

3. In the navigation pane on the left side, choose the visualizer icon.

Facets API Version 2012-08-10 1482

Amazon DynamoDB Developer Guide

aW% NoSQL Workbench
S~—

AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

4. Choose the Songs table to expand it. You'll be shown an aggregate view of your data.

R e e e

2% AWS database catalog

Data model & Songs GSI: DownloadsByMonth

Y S D Ra0E Music Library Data Model

Primary key
Attributes
= Partition key: Id Sort key: Metadata
A Data modeler
Title Artist TotalDownloads
& songs Details
Wwild Love Argyboots 3
£ Operation builder Aggregate view DownloadTimestamp

DId-9349823681
2018-01-01T00:00:07
B Documentation (3 Commit to Amazon DynamoDB @
DownloadTimestamp
1 DId-9349823682
& Share feedback 2018-01-01T00:01:08

5. Choose Facets drop-down arrow to expand the available facets.

6. Choose the SongDetails facet to visualize the data with the SongDetails facet applied.

Visualizer [FACET] SongDetails Total 3 10/page 1 m

2% AWS database catalog Data model ©

songld (Partition key) : String Metadata (Sort key) : String Title : String Artist : String TotalDownloads : String
O D Music Library Data Model
1 Details wild Love Argyboots 3
A Data modeler 2 Details Example Song Title Jorge Souza 4
€8 Songs 12 ACME Album ACME Best Song ACME 4
£ Operation bullder Basis O M
i Facets @ 2 ~

B Documentation (2

SongDetails
& Share feedback

Downloads

You can also edit the facet definitions using the Data Modeler. For more information, see Editing an
existing data model.

Facets API Version 2012-08-10 1483

Amazon DynamoDB Developer Guide

Viewing all tables in a data model using aggregate view

The aggregate view in NoSQL Workbench for Amazon DynamoDB represents all the tables in a
data model. For each table, the following information appears:

» Table column names

o Sample data

« All global secondary indexes that are associated with the table. The following information is
displayed for each index:

e Index column names

o Sample data

To view all table information

1. In the navigation pane on the left side, choose the visualizer icon.

aW§ NoSQL Workbench
N —

B8 AWS database catalog

Amazon DynamoDB

Data modeler

Operation builder

2. In the visualizer, choose Aggregate view.

Aggregate view API Version 2012-08-10 1484

Amazon DynamoDB Developer Guide

Visualizer Aogregate view

25 AWS database catalog

Data model @ Forum

O EEE D Discussion Forum

Primary key
Attributes
Partition key: ForumName

A Data modeler

Category Threads Messages Views

8 Forum Amazon DynamoDB

Amazon Web Services 2 4 1000

BICpsation Duildes! B8 Thread v Category Threads Messages Views
Amazon Simple Notification Service
‘Amazon Web Services 5 5 1200
. Repl) v

B Documentation (4 B8 Reply

Category Threads Messages Views

Amazon Simple Queue Service

& Share feedback ‘Aggregate view Amazon Web Services 9 6 1300

— Category Threads Messages Views
Commit to Amazon DynamoDB @ Amazon MQ
Amazon Web Services 22 7 1400
Category Threads Messages Views
Amazon EMR
Amazon Web Services 15 8 600
Category Threads Messages Views
AWS Data Pipeline
Amazon Web Services 19 9 500
Category Threads Messages Views
Amazon Athena
Amazon Web Services 43 10 s5
Category Threads Messages Views
AWS Step Functions
Amazon Web Services 30 1 99
@D oozl 0 [hie
Primary key
Attributes

Committing a data model to DynamoDB

When you are satisfied with your data model, you can commit the model to Amazon DynamoDB.

(® Note
« This action results in the creation of server-side resources in AWS for the tables and
global secondary indexes represented in the data model.
» Tables are created with the following characteristics:
» Auto scaling is set to 70 percent target utilization.
» Provisioned capacity is set to 5 read capacity units and 5 write capacity units.

» Global secondary indexes are created with provisioned capacity of 10 read capacity units
and 5 write capacity units.

To commit the data model to DynamoDB

1. In the navigation pane on the left side, choose the visualizer icon.

Committing a data model API Version 2012-08-10 1485

Amazon DynamoDB Developer Guide

aW% NoSQL Workbench
S~—

B8 AWS database catalog

A Amazon DynamoDB

Data modeler

Operation builder

2. Choose Commit to DynamoDB.

Committing a data model API Version 2012-08-10 1486

Amazon DynamoDB

Developer Guide

aws NoSQL Workbench
N —

== AWS database catalog

#A Amazon DynamoDB

A Data modeler

Operation builder

3 Documentation [

Share feedback

Visualizer

Data model ©

Discussion Forum

BB Forum

BB Thread

BB Reply

Aggregate view

Commit to Amazon DynamoDB @

3. Choose an already existing connection, or create a new connection by choosing the Add new

remote connection tab.

» To add a new connection, specify the following information:

Account Alias

AWS Region

Access key ID

Secret access key

For more information about how to obtain the access keys, see Getting an AWS access key.

» You can optionally specify the following:

« Session token

« IAM role ARN

Committing a data model

API Version 2012-08-10 1487

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

Amazon DynamoDB Developer Guide

« If you don't want to sign up for a free tier account, and prefer to use DynamoDB local

(downloadable version):

1. Choose the Add a new DynamoDB local connection tab.
2. Specify the Connection name and Port.

4. Choose Commit.

(® Note

If you installed DynamoDB local as part of the NoSQL Workbench setup, you'll need to
turn DynamoDB local on by using the DynamoDB local Server toggle at the bottom left
of the NoSQL Workbench screen. See Install NoSQL Workbench for DynamoDB for more
information on this toggle.

Exploring datasets and building operations with NoSQL
Workbench

NoSQL Workbench for Amazon DynamoDB provides a rich graphical user interface for developing
and testing queries. You can use the operation builder in NoSQL Workbench to view, explore, and
query live datasets. The structured operation builder supports projection expression, condition
expression, and generates sample code in multiple languages. You can directly clone tables

from one Amazon DynamoDB account to another one in different Regions. You can also directly
clone tables between DynamoDB local and an Amazon DynamoDB account for faster copying

of your table's key schema (and optionally GSI schema and items) between your development
environments.You can save as many as 50 DynamoDB data operations in the operation builder.

Topics

« Connecting to live datasets

» Building complex operations

» Cloning tables with NoSQL Workbench

» Exporting data to a CSV file

Operation builder API Version 2012-08-10 1488

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

Connecting to live datasets

To connect to your Amazon DynamoDB tables with NoSQL Workbench, you must first connect to
your AWS account.

To add a connection to your database

1.

In NoSQL Workbench, in the navigation pane on the left side, choose the Operation builder
icon.

Choose Add connection.

Specify the following information:

Connection name

o AWS Region

Access key ID

Secret access key

For more information about how to obtain the access keys, see Getting an AWS access key.

You can optionally, specify the following:

« Session token

« IAMrole ARN

Choose Connect.

If you don't want to sign up for a free tier account, and prefer to use DynamoDB local

(downloadable version):

a. Choose the Local tab on the connection screen.

b. Specify the following information:

« Connection name
e Port

c. Choose the connect button.

Connecting to datasets API Version 2012-08-10 1489

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

(® Note

To connect to DynamoDB local, either manually launch DynamoDB local using your
terminal (see deploying DynamoDB local on your computer) or launch DynamoDB local
directly using the DDB local toggle in the NoSQL Workbench navigation menu. Ensure
the connection port is the same as your DynamoDB local port.

5. On the created connection, choose Open.

After connecting to your DynamoDB database, the list of available tables appears in the left pane.
Choose one of the tables to return a sample of the data stored in the table.

You can now run queries against the selected table.

To run queries on a table, see the next section on building operations see Building complex
operations.

Building complex operations

The operation builder in NoSQL Workbench for Amazon DynamoDB provides a visual interface
where you can perform complex data plane operations. It includes support for projection
expressions and condition expressions. Once you've built an operation, you can save it for later use
(up to 50 operations can be saved). You can then browse a list of your frequently used data-plane
operations in the Saved Operations menu, and use them to automatically populate and build a
new operation. You can also generate sample code for these operations, in multiple languages.

NoSQL Workbench supports building PartiQL for DynamoDB statements, which allows you to
interact with DynamoDB using a SQL-compatible query language. NoSQL Workbench also supports
building DynamoDB CRUD API operations.

To use NoSQL Workbench to build operations, in the navigation pane on the left side, choose the
Operation builder icon.

Topics

« Building PartiQL statements

 Building APl operations

Building operations API Version 2012-08-10 1490

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

Building PartiQL statements

To use NoSQL Workbench to build PartiQL for DynamoDB statements, choose PartiQL editor near
the top of the NoSQL Workbench UL.

You can build the following PartiQL statement types in the operation builder.

Topics

« Singleton statements

« Transactions

« Batch

Singleton statements
To run or generate code for a PartiQL statement, do the following.

1. Choose PartiQL editor near the top of the window.

2. Enter a valid PartiQL statement.

3. If your statement uses parameters:

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.

4. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

5. If you want the operation to be run immediately, choose Run.

6. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Transactions

To run or generate code for a PartiQL transaction, do the following.

1. Choose PartiQLTransaction from the More operations dropdown.

Building operations API Version 2012-08-10 1491

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.statements.html

Amazon DynamoDB Developer Guide

2. Choose Add a new statement.

3. Enter a valid PartiQL statement.

@ Note

Read and write operations are not supported in the same PartiQL transaction request.
A SELECT statement cannot be in the same request with INSERT, UPDATE, and DELETE
statements. See Performing transactions with PartiQL for DynamoDB for more details.

4. If your statement uses parameters

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.
5. If you want to add more statements, repeat steps 2 to 4.

6. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Batch

To run or generate code for a PartiQL batch, do the following.

1. Choose PartiQLBatch from the More operations dropdown.
2. Choose Add a new statement.

3. Enter a valid PartiQL statement.

@ Note

Read and write operations are not supported in the same PartiQL batch request, which
means a SELECT statement cannot be in the same request with INSERT, UPDATE, and

Building operations API Version 2012-08-10 1492

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.statements.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.transactions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.statements.html

Amazon DynamoDB Developer Guide

DELETE statements. Write operations to the same item are not allowed. As with the
BatchGetltem operation, only singleton read operations are supported. Scan and
query operations are not supported. See Running batch operations with PartiQL for

DynamoDB for more details.

4. If your statement uses parameters:

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.
5. If you want to add more statements, repeat steps 2 to 4.

6. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Building API operations

To use NoSQL Workbench to build DynamoDB CRUD APIs, select Operation builder from the left
of the NoSQL Workbench user interface.

Then select Open and choose a connection.
You can perform the following operations in the operation builder.

+ Delete Table
o Create Table
« Update Table

e Put ltem

« Update Item
+ Delete Item

Building operations API Version 2012-08-10 1493

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.batching.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.batching.html

Amazon DynamoDB Developer Guide

e Query
e Scan

e Transact Get Items

« Transact Write Items

Delete table
Torun aDelete Table operation, do the following.

1. Find the table you want to delete from the Tables section.

2. Select Delete Table from the horizontal ellipsis menu.

3. Confirm you want to delete the table by entering the Table name.
4. Select Delete.

For more information about this operation, see Delete table in the Amazon DynamoDB API
Reference.

Delete GSI

To run a Delete GSI operation, do the following.

Find the GSI of a table you want to delete from the Tables section.
Select Delete GSI from the horizontal ellipsis menu.

Confirm you want to delete the GSI by entering the GSI name.

el A

Select Delete.

For more information about this operation, see Delete table in the Amazon DynamoDB AP
Reference.

Create table

TorunaCreate Table operation, do the following.

1. Choose the + icon next to the Tables section.
2. Enter the table name desired.

3. Create a partition key.

Building operations API Version 2012-08-10 1494

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteTable.html

Amazon DynamoDB Developer Guide

4. Optional: create a sort key.
5. To customize capacity settings, and uncheck the box next to Use default capacity settings.

« You can now select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity
units. You can also enable or disable auto scaling.

« If the table is currently set to On-demand, you will be unable to specify a provisioned
throughput.

o If you switch from On-demand to Provisioned throughput, then Autoscaling will
automatically be applied to all GSlIs with: min: 1, max: 10; target: 70%.

6. Select Skip GSIs and create to create this table without a GSI. Optionally, you can select Next
to create a GSI with this new table.

For more information about this operation, see Create table in the Amazon DynamoDB API
Reference.

Create GSI
Torun a Create GSI operation, do the following.

Find a table that you want to add a GSI to.

From the horizontal ellipsis menu, select Create GSI.
Name your GSI under Index name.

Create a partition key.

Optional: create a sort key.

Choose a projection type option from the dropdown.

Select Create GSI.

N o u MW DN =

For more information about this operation, see Create table in the Amazon DynamoDB API
Reference.

Update table
To update capacity settings for a table with an Update Table operation, do the following.

1. Find the table you want to update capacity settings for.

Building operations API Version 2012-08-10 1495

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html

Amazon DynamoDB Developer Guide

2. From the horizontal ellipsis menu, select Update capacity settings.

3. Select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity units.
You can also enable or disable auto scaling.

4. Select Update.

For more information about this operation, see Update table in the Amazon DynamoDB API
Reference.

Update GSI

To update capacity settings for a GSI with an Update Table operation, do the following.

(® Note

By default, global secondary indexes inherit the capacity settings of the base table. Global
secondary indexes can have a different capacity mode only when the base table is in
provisioned capacity mode. When you create a global secondary index on a provisioned
mode table, you must specify read and write capacity units for the expected workload on
that index. For more information, see Provisioned throughput considerations for Global
Secondary Indexes.

1. Find the GSI you want to update capacity settings for.
2. From the horizontal ellipsis menu, select Update capacity settings.

3. You can now select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity units.
You can also enable or disable auto scaling.

4. Select Update.

For more information about this operation, see Update table in the Amazon DynamoDB API
Reference.

Building operations API Version 2012-08-10 1496

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

Put item

You create an item by using the Put Item operation. To run or generate code for a Put Item
operation, do the following.

1. Find the table you want to create an item in.
From the Actions dropdown, select Create item.
Enter the partition key value.

Enter the sort key value, if one exists.

ok W

If you want to add non-key attributes, do the following:

a. Select + Add other attributes.
b. Specify the Attribute name, Type, and Value.
6. If a condition expression must be satisfied for the Put Item operation to succeed, do the
following:
a. Choose Condition.
b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

7. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

8. If you want the operation to be run immediately, choose Run.

9. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see Putltem in the Amazon DynamoDB API Reference.
Update item

To run or generate code for an Update Item operation, do the following:

1. Find the table you want to update an item in.

Building operations API Version 2012-08-10 1497

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

2. Select the item.
3. Enter the attribute name and attribute value for the selected expression.

4. If you want to add more expressions, choose another expression in the Update Expression
dropdown list, and then select the + icon.

5. If a condition expression must be satisfied for the Update Item operation to succeed, do the
following:
a. Choose Condition.
b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

6. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see Updateltem in the Amazon DynamoDB API
Reference.

Delete item

Torun aDelete Itemoperation, do the following.

1. Find the table you want to delete an item in.

2. Select the item.

3. From the Actions dropdown, select Delete item.
4

Confirm you want to delete the item by selecting Delete.

For more information about this operation, see Deleteltem in the Amazon DynamoDB API
Reference.

Building operations API Version 2012-08-10 1498

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

Duplicate item

You can duplicate an item by creating a new item with the same attributes. To duplicate an item,
do the following.

Find the table you want to duplicate an item in.
Select the item.

From the Actions dropdown, select Duplicate item.
Specify a new partition key.

Specify a new sort key (if necessary).

A o

Select Run.

For more information about this operation, see Deleteltem in the Amazon DynamoDB API
Reference.

Query
To run or generate code for a Query operation, do the following.

1. Select Query from the top of the NoSQL Workbench Ul.
2. Specify the partition key value.

3. If asortkey is needed for the Query operation:

a. Select Sort key.
b. Specify the comparison operator, and attribute value.

4. Select Query to run this query operation. If more options are needed, check the More options
checkbox and continue on with the following steps.

5. If not all the attributes should be returned with the operation result, select Projection
expression.

Choose the + icon.
Enter the attribute to return with the query result.

If more attributes are needed, choose the + .

w o N o

If a condition expression must be satisfied for the Query operation to succeed, do the
following:

a. Choose Condition.

Building operations API Version 2012-08-10 1499

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

10. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

11. If you want the operation to be run immediately, choose Run.

12. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see Query in the Amazon DynamoDB API Reference.
Scan

To run or generate code for a Scan operation, do the following.

1. Select Scan from the top of the NoSQL Workbench UL.

2. Select the Scan button to perform this basic scan operation. If more options are needed, check
the More options checkbox and continue on with the following steps.

3. Specify an attribute name to filter your scan results.

4. If not all the attributes should be returned with the operation result, select Projection
expression.

5. If a condition expression must be satisfied for the scan operation to succeed, do the following:

a. Choose Condition.
b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

6. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

Building operations API Version 2012-08-10 1500

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

7.
8.

If you want the operation to be run immediately, choose Run.

If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

TransactGetltems

To run or generate code for a TransactGetItems operation, do the following.

1.

i d W

From the More operations dropdown at the top of the NoSQL Workbench Ul, choose
TransactGetltems.

Choose the + icon near TransactGetltem.
Specify a partition key.
Specify a sort key (if necessary).

Select Run to perform the operation, Save operation to save it, or Generate code to generate
code for it.

For more information about transactions, see Amazon DynamoDB transactions.

TransactWriteltems

To run or generate code fora TransactWriteItems operation, do the following.

1.

From the More operations dropdown at the top of the NoSQL Workbench Ul, choose
TransactWriteltems.

Choose an operation from the Actions dropdown.
Choose the + icon near TransactWriteltem.

In the Actions dropdown, choose the operation that you want to perform.

« For DeleteItem, follow the instructions for the Delete item operation.
« For PutItem, follow the instructions for the Put item operation.

« For UpdateItem, follow the instructions for the Update item operation.

To change the order of actions, choose an action in the list on the left side, and then choose
the up or down arrows to move it up or down in the list.

To delete an action, choose the action in the list, and then choose the Delete (trash can) icon.

Building operations API Version 2012-08-10 1501

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

5. Select Run to perform the operation, Save operation to save it, or Generate code to generate
code for it.

For more information about transactions, see Amazon DynamoDB transactions.

Cloning tables with NoSQL Workbench

Cloning tables will copy a table’s key schema (and optionally GSI schema and items) between
your development environments. You can clone a table between DynamoDB local to an Amazon
DynamoDB account, and even clone a table from one account to another in different Regions for
faster experimentation.

To clone a table
1. Inthe Operation Builder, select your connection and Region (Region selection is not available

for DynamoDB local).

2. Once you are connected to DynamoDB, browse your tables and select the table you want to
clone.

3. From the horizontal ellipsis menu, select the Clone option.

4. Input your clone destination details:

a. Select a connection.
b. Select a Region (Region is not available for DynamoDB local).
c. Enter a new table name.

d. Choose a clone option:

i. Keyschema is selected by default and cannot be unselected. By default, cloning a
table will copy your primary key and sort key if they are available.

ii. GSIschema is selected by default if your table to be cloned has a GSI. Cloning a
table will copy your GSI primary key and sort key if they are available. You have the
option to deselect GSI schema to skip cloning the GSI schema. Cloning a table will
copy your base table's capacity settings as the GSl's capacity settings. You can use
the UpdateTable operation in Operation Builder to update the table's GSI capacity
setting after cloning is complete.

Cloning tables API Version 2012-08-10 1502

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

5. Enter the number of items to clone. To only clone the key schema and optionally the GSI
schema, you can keep the Items to clone value at 0. The maximum number of items that can
be cloned is 5000.

6. Choose a capacity mode:
a. On-demand mode is selected by default. DynamoDB on-demand offers pay-per-request

pricing for read and write requests so that you pay only for what you use. To learn more,
see DynamoDB On-demand mode.

b. Provisioned mode lets you specify the number of reads and writes per second that you
require for your application. You can use auto scaling to adjust your table’s provisioned
capacity automatically in response to traffic changes. To learn more, see DynamoDB
Provisioned mode.

7. Select Clone to begin cloning.

8. The cloning process will run in the background. The Operation builder tab will show a
notification when there is a change in the cloning table status. You can access this status by
selecting the Operation builder tab and then selecting the arrow button. The arrow button is
located on the cloning table status widget located near the bottom of the menu sidebar.

Exporting data to a CSV file

You can export the results of a query from Operation Builder to a CSV file. This enables you to load
the data into a spreadsheet or process it using your preferred programming language.

Exporting to CSV

1. In the Operation Builder, run an operation of your choice, such as a Scan or Query.

(® Note
» You can only export results from read APl operations and PartiQL statements to a
CSV file. You can't export results from transaction read statements.

» Currently, you can export results one page at a time to a CSV file. If there are
multiple pages of results, you must export each page individually.

2. Select the items you want to export from the results.

3. Inthe Actions dropdown, choose Export as CSV.

Exporting to CSV API Version 2012-08-10 1503

Amazon DynamoDB Developer Guide

4. Choose a filename and location for your CSV file and select Save.

Sample data models for NoSQL Workbench

The home page for the modeler and visualizer display a number of sample models that ship with
the NoSQL Workbench. This section describes these models and their potential uses.

Topics

o Employee data model

« Discussion forum data model

o Music library data model

« Ski resort data model

o Credit card offers data model

+ Bookmarks data model

Employee data model

This data model is an introductory model. It represents an employee’s basic details such as a
unique alias, first name, last name, designation, manager, and skills.

This data model depicts a few techniques such as handling complex attribute such as having more
than one skill. This model is also an example of one-to-many relationship through the manager
and their reporting employees that has been achieved by the secondary index DirectReports.

The access patterns facilitated by this data model are:
 Retrieval of an employee record using the employee's login alias, facilitated by a table called
Employee.

» Search for employees by name, facilitated by the Employee table’s global secondary index called
Name.

 Retrieval of all direct reports of a manager using the manager’s login alias, facilitated by the
Employee table’s global secondary index called DirectReports.

Sample data models API Version 2012-08-10 1504

Amazon DynamoDB Developer Guide

Discussion forum data model

This data model represents a discussion forums. Using this model customers can engage with the
developer community, ask questions, and respond to other customers' posts. Each AWS service has
a dedicated forum. Anyone can start a new discussion thread by posting a message in a forum, and
each thread receives any number of replies.

The access patterns facilitated by this data model are:

 Retrieval of a forum record using the forum’'s name, facilitated by a table called Forum.
 Retrieval of a specific thread or all threads for a forum, facilitated by a table called Thread.

 Search for replies using the posting user’'s email address, facilitated by the Reply table's global
secondary index called PostedBy-Message-Index.

Music library data model

This data model represents a music library that has a large collection of songs and showcases its
most downloaded songs in near-real time.

The access patterns facilitated by this data model are:

 Retrieval of a song record, facilitated by a table called Songs.

 Retrieval of a specific download record or all download records for a song, facilitated by a table
called Songs.

« Retrieval of a specific monthly download count record or all monthly download count records for
a song, facilitated by a table called Song.

» Retrieval of all records (including song record, download records, and monthly download count
records) for a song, facilitated by a table called Songs.

« Search for most downloaded songs, facilitated by the Songs table's global secondary index called
DownloadsByMonth.

Ski resort data model

This data model represents a ski resort that has a large collection of data for each ski lift collected
daily.

The access patterns facilitated by this data model are:

Discussion forum data model API Version 2012-08-10 1505

Amazon DynamoDB Developer Guide

» Retrieval of all data for a given ski lift or overall resort, dynamic and static, facilitated by a table
called SkilLifts.

» Retrieval of all dynamic data (including unique lift riders, snow coverage, avalanche danger,
and lift status) for a ski lift or the overall resort on a specific date, facilitated by a table called
SkilLifts.

» Retrieval of all static data (including if the lift is for experienced riders only, vertical feet the lift
rises, and lift riding time) for a specific ski lift, facilitated by a table called SkiLifts.

» Retrieval of date of data recorded for a specific ski lift or the overall resort sorted by total unique
riders, facilitated by the SkiLifts table's global secondary index called SkiLiftsByRiders.

Credit card offers data model

This data model is used by a Credit Card Offers Application.

A credit card provider produces offers over time. These offers include balance transfers without
fees, increased credit limits, lower interest rates, cash back, and airline miles. After a customer
accepts or declines these offers, the respective offer status is updated accordingly.

The access patterns facilitated by this data model are:

 Retrieval of account records using AccountId, as facilitated by the main table.

 Retrieval of all the accounts with few projected items, as facilitated by the secondary index
AccountIndex.

 Retrieval of accounts and all the offer records associated with those accounts by using
AccountId, as facilitated by the main table.

« Retrieval of accounts and specific offer records associated with those accounts by using
AccountIdand OfferId, as facilitated by the main table.

 Retrieval of all ACCEPTED/DECLINED offer records of specific 0f ferType associated with
accounts using AccountId, OfferType, and Status, as facilitated by the secondary index
GSI1.

» Retrieval of offers and associated offer item records using OfferId, as facilitated by the main
table.

Bookmarks data model

This data model is used store bookmarks for customers.

Credit card offers data model API Version 2012-08-10 1506

Amazon DynamoDB Developer Guide

A customer can have many bookmarks and a bookmark can belong to many customers. This data
model represents a many-to-many relationship.

The access patterns facilitated by this data model are:

A single query by customerId can now return customer data as well as bookmarks.

A query ByEmail index returns customer data by email address. Note that bookmarks are not
retrieved by this index.

A query ByUr1l index gets bookmarks data by URL. Note that we have customerld as the sort key
for the index because the same URL can be bookmarked by multiple customers.

A query ByCustomerFolder index gets bookmarks by folder for each customer.

Release history for NoSQL Workbench

The following table describes the important changes in each release of the NoSQL Workbench

client tool.
Version Change Description Date
3.13.5 Capacity mode for When you create a February 24, 2025
default table settings table with default
is now on-demand settings, DynamoDB
creates a table that
uses on-demand
capacity mode
instead of provision
ed capacity mode.
3.13.0 NoSQL Workbench NoSQL Workbench April 24, 2024
operation builder now includes native
improvements support for dark

mode. Improved
table and item
operations in the
operations builder.
Item results and
operation builder

Release history API Version 2012-08-10 1507

Amazon DynamoDB

Developer Guide

Version Change
3.12.0 Cloning tables with
NoSQL Workbench

and returning
capacity consumed

3.11.0 DynamoDB local
improvements

Description

request information
is available in JSON
format.

You can now clone
tables between
DynamoDB local and
a DynamoDB web
service account or
between DynamoDB
web service accounts
for faster developme
nt iterations.

View RCU or WCU
consumed after
running an operation
using the Operations
Builder. We fixed the
overwrite data issue
when importing from
a CSV file.

You can now
specify port when
launching the built-
in DynamoDB local
instance. NoSQL
Workbench can
now be installed on
Windows without
admin rights. We
have updated

the data model
templates.

Date

February 26, 2024

January 17, 2024

Release history

API Version 2012-08-10 1508

Amazon DynamoDB

Developer Guide

Version

3.10.0

3.9.0

3.8.0

3.6.0

Change

Native support for
Apple silicon

Data modeler
improvements

Sample data
generation

Improvements in the
Operations builder

Description

NoSQL Workbench
now includes

native support for
Mac with Apple
silicon. You can now
configure sample
data generation
format for attributes
of type Number.

Visualizer now
supports committin
g data models to
DynamoDB local
with the option to
overwrite existing
tables.

NoSQL Workbench
now supports
generating sample
data for your
DynamoDB data
models.

Connections
management
improvements in the
Operations builder.
Attribute names in
Data Modeler can
now be changed
without deleting

data. Other bug fixes.

Date

December 5, 2023

November 3, 2023

September 25, 2023

April 11, 2023

Release history

API Version 2012-08-10 1509

Amazon DynamoDB

Developer Guide

Version

3.5.0

3.4.0

3.3.0

3.2.0

3.1.0

Change

Support for new AWS

Regions

Support for
DynamoDB local

Support for control
plane operations

CSV import and
export

Save operations

Description

NoSQL Workbench

now supports the ap-

south-2, ap-southe
ast-3, ap-southe
ast-4, eu-central-2,
eu-south-2, me-
central-1, and me-
west-1 regions.

NoSQL Workbench
now supports

installing DynamoDB

local as part of the
installation process.

Operation Builder

now supports control

plane operations.

You can now import
sample data from

a CSV file in the
Visualizer tool,

and also export

the results of an
Operation Builder
query to a CSV file.

The Operation
Builder in NoSQL
Workbench now
supports saving
operations for later
use.

Date

February 23, 2023

December 6, 2022

June 1, 2022

October 11, 2021

July 12, 2021

Release history

API Version 2012-08-10 1510

Amazon DynamoDB Developer Guide

Version Change Description Date

3.0.0 Capacity settings NoSQL Workbench April 21, 2021
and CloudFormation for Amazon
import/export DynamoDB now
supports specifying
a read/write capacity
mode for tables, and
can now import and
export data models
in CloudFormation
format.

2.2.0 Support for PartiQL NoSQL Workbench December 4, 2020
for Amazon
DynamoDB adds
support for building
PartiQL statements
for DynamoDB.

1.1.0 Support for Linux. NoSQL Workbench May 4, 2020
for Amazon
DynamoDB is
supported on Linux—
Ubuntu, Fedora, and

Debian.
1.0.0 NoSQL Workbench NoSQL Workbench March 2, 2020
for Amazon for Amazon
DynamoDB - GA. DynamoDB is

generally available.

Release history API Version 2012-08-10 1511

Amazon DynamoDB

Developer Guide

Version

0.4.1

0.3.1

0.2.1

Change

Support for IAM
roles and temporary
security credentials.

Support for
DynamoDB local

(Downloadable

Version).

NoSQL Workbench
preview released.

Description

NoSQL Workbench
for Amazon
DynamoDB adds
support for AWS
Identity and Access
Management (IAM)
roles and temporary
security credentials.

The NoSQL
Workbench now
supports connectin

g to DynamoDB
local (Downloadable

Version) to design,
create, query, and
manage DynamoDB
tables.

This is the initial
release of NoSQL
Workbench for
DynamoDB. Use
NoSQL Workbench
to design, create,
query, and manage
DynamoDB tables.

Date

December 19, 2019

November 8, 2019

September 16, 2019

Release history

API Version 2012-08-10 1512

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

	Amazon DynamoDB
	Table of Contents
	What is Amazon DynamoDB?
	Characteristics of DynamoDB
	Serverless
	NoSQL
	Fully managed
	Single-digit millisecond performance at any scale

	DynamoDB use cases
	Capabilities of DynamoDB
	Multi-active replication with global tables
	ACID transactions
	Change data capture for event-driven architectures
	Secondary indexes

	Service integrations
	Serverless integrations
	Importing and exporting data to Amazon S3
	Zero-ETL integration
	Caching

	Security
	Resilience
	Global tables
	Continuous backups and point-in-time recovery
	On-demand backup and restore

	Accessing DynamoDB
	DynamoDB pricing
	Getting started with DynamoDB

	Getting started with DynamoDB
	Amazon DynamoDB resources for first-time users
	Amazon DynamoDB additional best practices for first-time users
	AWS CLI resources
	Programming resources

	Accessing DynamoDB
	Using the console
	Using the AWS CLI
	Downloading and configuring the AWS CLI
	Using the AWS CLI with DynamoDB
	Using the AWS CLI with DynamoDB local

	Using the API
	Using the NoSQL workbench for DynamoDB
	IP address ranges
	Dual-stack endpoints for Internet Protocol version 6 (IPv6)

	Prerequisites
	Setting up DynamoDB
	Setting up DynamoDB (web service)
	Signing up for AWS
	Granting programmatic access
	Configuring your credentials
	Integrating with other DynamoDB services

	Setting up DynamoDB local (downloadable version)
	Deploying DynamoDB locally on your computer
	Download DynamoDB local
	Run DynamoDB local as Docker image
	Run DynamoDB local as an Apache Maven dependency
	Run DynamoDB local in AWS CloudShell

	DynamoDB local usage notes
	Command line options
	Setting the local endpoint
	AWS Command Line Interface
	AWS SDKs

	Differences between downloadable DynamoDB and the DynamoDB web service

	Release history for DynamoDB local
	Telemetry in DynamoDB local
	Turn off telemetry using command line options
	Turn off telemetry for a single session
	Turn off telemetry for your profile in all sessions
	Turn off telemetry using DynamoDB local embedded on Maven projects
	Types of information collected
	Learn more

	Step 1: Create a table in DynamoDB
	the console
	AWS CLI
	AWS SDK

	Step 2: Write data to a DynamoDB table
	the console
	AWS CLI
	AWS SDK

	Step 3: Read data from a DynamoDB table
	the console
	AWS CLI
	AWS SDK

	Step 4: Update data in a DynamoDB table
	the console
	AWS CLI
	AWS SDK

	Step 5: Query data in a DynamoDB table
	the console
	AWS CLI
	AWS SDK

	Step 6: (Optional) Delete your DynamoDB table to clean up resources
	the console
	AWS CLI
	AWS SDK

	Continue learning about DynamoDB
	Generate infrastructure code for Amazon DynamoDB using Console-to-Code
	How it works
	Benefits of using Console-to-Code with DynamoDB
	Example use cases
	Getting started

	Amazon DynamoDB: How it works
	Cheat sheet for DynamoDB
	Initial setup
	SDK or CLI
	Basic actions
	Create a table
	Write item to a table
	Read item from a table
	Delete item from a table
	Query a table
	Delete a table
	List table names

	Naming rules
	Service quota basics
	Items, attributes, and expression parameters

	More information

	Core components of Amazon DynamoDB
	Tables, items, and attributes
	Primary key
	Secondary indexes
	DynamoDB Streams

	DynamoDB API
	Control plane
	Data plane
	PartiQL - A SQL-compatible query language
	Classic APIs
	Creating data
	Reading data
	Updating data
	Deleting data

	DynamoDB Streams
	Transactions
	PartiQL - A SQL-compatible query language
	Classic APIs

	Supported data types and naming rules in Amazon DynamoDB
	Naming rules
	Reserved words and special characters

	Data types
	Scalar types
	Number
	String
	Binary
	Boolean
	Null

	Document types
	List
	Map

	Sets

	Data type descriptors

	DynamoDB table classes
	Partitions and data distribution in DynamoDB
	Data distribution: Partition key
	Data distribution: Partition key and sort key

	Learn how to go from SQL to NoSQL
	Choosing between relational (SQL) and NoSQL
	Differences in accessing a relational (SQL) database and DynamoDB
	Differences between a relational (SQL) database and DynamoDB when creating a table
	Creating a table with SQL
	Creating a table with DynamoDB

	Differences between getting table information from a relational (SQL) database and DynamoDB
	Getting information about a table with SQL
	Getting information about a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when writing data to a table
	Writing data to a table with SQL
	Writing data to a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when reading data from a table
	Differences in reading an item using its primary key
	Reading an item using its primary key with SQL
	Reading an item using its primary key in DynamoDB

	Differences in querying a table
	Querying a table with SQL
	Querying a table in DynamoDB

	Differences in scanning a table
	Scanning a table with SQL
	Scanning a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when managing indexes
	Differences between a relational (SQL) database and DynamoDB when creating an index
	Creating an index with SQL
	Creating an index in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when querying and scanning an index
	Querying and scanning an index with SQL
	Querying and scanning an index in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when modifying data in a table
	Modifying data in a table with SQL
	Modifying data in a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when deleting data from a table
	Deleting data from a table with SQL
	Deleting data from a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when removing a table
	Removing a table with SQL
	Removing a table in DynamoDB

	Amazon DynamoDB learning resources and tools
	Tools for coding and visualization
	Prescriptive Guidance articles
	Knowledge Center articles
	Blog posts, repositories, and guides
	Data modeling and design pattern presentations
	Training courses

	DynamoDB reads and writes
	DynamoDB read consistency
	Eventually consistent reads
	Strongly consistent reads
	Global tables read consistency

	DynamoDB read and write operations
	Capacity unit consumption for read operations
	Capacity unit consumption for write operations

	DynamoDB throughput capacity
	On-demand mode
	Provisioned mode
	DynamoDB on-demand capacity mode
	Read request units and write request units
	Initial throughput and scaling properties
	DynamoDB maximum throughput for on-demand tables
	Considerations when using maximum throughput for on-demand mode
	Request throttling and CloudWatch metrics

	DynamoDB provisioned capacity mode
	Read capacity units and write capacity units
	Choosing initial throughput settings
	DynamoDB auto scaling
	Utilization rate

	Managing throughput capacity automatically with DynamoDB auto scaling
	How DynamoDB auto scaling works
	Usage notes
	Using the the console with DynamoDB auto scaling
	Before you begin: Granting user permissions for DynamoDB auto scaling
	Creating a new table with auto scaling enabled
	Enabling DynamoDB auto scaling on existing tables
	Viewing auto scaling activities on the console
	Modifying or disabling DynamoDB auto scaling settings

	Using the AWS CLI to manage DynamoDB auto scaling
	Before you begin
	Install the AWS CLI
	Install Python

	Step 1: Create a DynamoDB table
	Step 2: Register a scalable target
	Step 3: Create a scaling policy
	Step 4: Drive write traffic to TestTable
	Step 5: View Application Auto Scaling actions
	(Optional) Step 6: Clean up

	Using the AWS SDK to configure auto scaling on Amazon DynamoDB tables
	Enabling Application Auto Scaling for a table
	Disabling Application Auto Scaling for a table

	DynamoDB reserved capacity

	Understanding DynamoDB warm throughput
	Check your DynamoDB table's current warm throughput
	the console
	AWS CLI

	Increase your existing DynamoDB table's warm throughput
	the console
	AWS CLI
	AWS SDK

	Create a new DynamoDB table with higher warm throughput
	the console
	AWS CLI
	AWS SDK

	Understanding DynamoDB warm throughput in different scenarios
	Warm throughput and uneven access patterns
	Warm throughput for a provisioned table
	Warm throughput for an on-demand table
	Warm throughput for an on-demand table with maximum throughput configured

	DynamoDB burst and adaptive capacity
	Burst capacity
	Adaptive capacity
	Isolate frequently accessed items

	Considerations when switching capacity modes in DynamoDB
	Switching from provisioned capacity mode to on-demand capacity mode
	Initial throughput for on-demand capacity mode
	Auto scaling settings
	Bulk editing capacity mode in the DynamoDB console

	Switching from on-demand capacity mode to provisioned capacity mode
	Managing capacity
	Managing auto scaling

	Programming with DynamoDB and the AWS SDKs
	Overview of AWS SDK support for DynamoDB
	SDK support of AWS account-based endpoints
	Programmatic interfaces that work with DynamoDB
	Low-level interfaces that work with DynamoDB
	Low-level interface example

	Document interfaces that work with DynamoDB
	Document interface example

	Object persistence interfaces that work with DynamoDB
	Object persistence interface example

	Higher-level programming interfaces for DynamoDB
	Java 1.x: DynamoDBMapper
	DynamoDBMapper Class
	save
	load
	delete
	query
	queryPage
	scan
	scanPage
	parallelScan
	batchSave
	batchLoad
	batchDelete
	batchWrite
	transactionWrite
	transactionLoad
	count
	generateCreateTableRequest
	createS3Link
	getS3ClientCache

	Supported data types for DynamoDBMapper for Java
	Java Annotations for DynamoDB
	DynamoDBAttribute
	DynamoDBAutoGeneratedKey
	DynamoDBAutoGeneratedTimestamp
	DynamoDBDocument
	DynamoDBHashKey
	DynamoDBIgnore
	DynamoDBIndexHashKey
	DynamoDBIndexRangeKey
	DynamoDBRangeKey
	DynamoDBTable
	DynamoDBTypeConverted
	DynamoDBTyped
	DynamoDBVersionAttribute

	Optional configuration settings for DynamoDBMapper
	DynamoDB and optimistic locking with version number
	Disabling optimistic locking

	Mapping arbitrary data in DynamoDB
	DynamoDBMapper examples

	Java 2.x: DynamoDB Enhanced Client
	Working with the .NET document model in DynamoDB
	Supported data types

	Working with the .NET object persistence model and DynamoDB
	Supported data types
	DynamoDB attributes from the .NET object persistence model
	DynamoDBGlobalSecondaryIndexHashKey
	DynamoDBGlobalSecondaryIndexRangeKey
	DynamoDBHashKey
	DynamoDBIgnore
	DynamoDBLocalSecondaryIndexRangeKey
	DynamoDBProperty
	DynamoDBRenamable
	DynamoDBRangeKey
	DynamoDBTable
	DynamoDBVersion

	DynamoDBContext class from the .NET object persistence model
	Create​MultiTable​BatchGet
	Create​MultiTable​BatchWrite
	CreateBatchGet
	CreateBatchWrite
	Delete
	Dispose
	Execute​Batch​Get
	Execute​Batch​Write
	FromDocument
	FromQuery
	FromScan
	Get​Target​Table
	Load
	Query
	Save
	Scan
	ToDocument
	Specifying optional parameters for DynamoDBContext

	Optimistic locking using DynamoDB and the AWS SDK for .NET object persistence model
	Disabling optimistic locking

	Mapping arbitrary data with DynamoDB using the AWS SDK for .NET object persistence model

	Running the code examples in this Developer Guide
	Creating tables and loading data for code examples in DynamoDB
	Java code examples
	Java: Setting your AWS credentials
	Java: Setting the AWS Region and endpoint
	AWS SDK V1
	AWS SDK V2

	.NET code examples
	.NET: Setting your AWS credentials
	.NET: Setting the AWS Region and endpoint

	DynamoDB low-level API
	Request format
	Response format
	Data type descriptors
	Numeric data
	Binary data

	Programming Amazon DynamoDB with Python and Boto3
	About Boto
	Using the Boto documentation
	Understanding the client and resource abstraction layers
	Using the table resource batch_writer
	Additional code examples that explore the client and resource layers
	Understanding how the Client and Resource objects interact with sessions and threads
	Customizing the Config object
	Error handling
	Logging
	Event hooks
	Pagination and the Paginator
	Waiters

	Programming Amazon DynamoDB with JavaScript
	About AWS SDK for JavaScript
	Using the AWS SDK for JavaScript V3
	Accessing JavaScript documentation
	Abstraction layers
	Low-level client (DynamoDBClient)
	High-level client (DynamoDBDocumentClient)

	Using the marshall utility function
	Reading items
	Conditional writes
	Pagination
	Using the paginateScan convenience method

	Specifying configuration
	Config for timeouts
	Config for keep-alive
	Config for retries

	Waiters
	Error handling
	Logging
	Considerations

	Programming DynamoDB with the AWS SDK for Java 2.x
	About the AWS SDK for Java 2.x
	Support for Java versions

	Getting started with the AWS SDK for Java 2.x
	Step 1: Set up for this tutorial
	Step 2: Create the project
	pom.xml

	Step 3: Write the code
	App class
	DependencyFactory class
	Handler class, Maven-generated
	Handler class, implemented

	Step 4: Build and run the application
	Success
	Cleanup

	Reviewing the AWS SDK for Java 2.x documentation
	Supported interfaces
	Low-level interface
	High-level interface
	High-level interface using immutable data classes
	High-level interface using immutable data classes and third-party boilerplate generation libraries

	Document interface
	Comparing interfaces with a Query example

	Additional code examples
	Synchronous and asynchronous programming
	HTTP clients
	Apache-based HTTP client
	URLConnection-based HTTP client
	Netty-based HTTP client
	AWS CRT-based HTTP client

	Configuring an HTTP client
	Timeout configuration
	RetryMode
	Retry policies

	DefaultsMode
	Keep-Alive configuration

	Error handling
	AWS request ID
	Logging
	AWS request ID logging

	Pagination
	Data class annotations

	Error handling with DynamoDB
	Error components
	Transactional errors
	Error messages and codes
	HTTP status code 400
	HTTP status code 5xx

	Error handling in your application
	Error retries and exponential backoff
	Batch operations and error handling

	Using DynamoDB with an AWS SDK

	Working with tables, items, queries, scans, and indexes
	Working with tables and data in DynamoDB
	Basic operations on DynamoDB tables
	Creating a table
	Example 1: Create an on-demand table
	Example 2: Create a provisioned table
	Example 3: Create a table using the DynamoDB standard-infrequent access table class

	Describing a table
	Updating a table
	Deleting a table
	Using deletion protection
	Listing table names
	Describing provisioned throughput quotas

	Considerations when choosing a table class in DynamoDB
	Adding tags and labels to resources in DynamoDB
	Tagging restrictions in DynamoDB
	Tagging resources in DynamoDB
	Setting permissions to filter by tags
	Adding tags to new or existing tables (the console)
	Adding tags to new or existing tables (AWS CLI)

	Using DynamoDB tags to create cost allocation reports

	Global tables - multi-active, multi-Region replication
	How DynamoDB global tables work
	Concepts
	Versions
	Availability
	Consistency modes
	Multi-Region eventual consistency (MREC)
	Multi-Region strong consistency (MRSC)

	Choosing a consistency mode
	Monitoring global tables
	Fault injection testing
	Time To Live (TTL)
	Streams
	Transactions
	Read and write throughput
	Settings synchronization
	DynamoDB Accelerator (DAX)
	Considerations for managing global tables

	Tutorials: Creating global tables
	Creating a global table configured for MREC
	Creating a MREC global table using the DynamoDB Console
	Creating a MREC global table using the AWS CLI or Java

	Creating a global table configured for MRSC
	Creating a MRSC global table using the DynamoDB Console
	Creating a MRSC global table using the AWS CLI or Java

	DynamoDB global tables security
	Service-linked roles for global tables
	Replication service-linked role
	Auto scaling service-linked role
	Example IAM policies for service-linked roles
	Excluding required SLR permissions from deny policies

	How global tables use AWS IAM
	Creating global tables and adding replicas
	Permissions for creating global tables
	Additional permissions for MRSC global tables using a witness
	Example IAM policies for creating global tables
	Creating MREC or MRSC global table across three Regions
	Restricting MREC or MRSC global table creation to specific Regions
	Creating MRSC global table with witness
	Restricting MRSC witness creation to specific Regions

	Updating global tables
	Deleting global tables and removing replicas
	Permissions for deleting global tables and removing replicas
	Additional permissions for MRSC global tables using a witness
	Examples IAM policies to delete a global table replicas
	Deleting global table replicas
	Deleting a MRSC global table with a witness

	How global tables use AWS KMS

	Understanding Amazon DynamoDB billing for global tables
	How it works
	Consistency modes and billing
	DynamoDB global tables billing example

	DynamoDB global tables versions
	Determining the version of a global table
	Determining the version using the AWS CLI
	Identifying a version 2019.11.21 (Current) global table replica
	Identifying a version 2017.11.29 (Legacy) global table replica

	Determining the version using the DynamoDB Console

	Differences in behavior between Legacy and Current versions
	Upgrading to the current version
	Required permissions for global tables upgrade
	What to expect during the upgrade
	DynamoDB Streams behavior before, during, and after upgrade
	Upgrading to version 2019.11.21 (Current)

	Best practices for global tables
	Version
	Deletion protection
	Using AWS CloudFormation
	Backups and Point-in-Time Recovery
	Designing for multi-Region high availability

	Working with items and attributes in DynamoDB
	DynamoDB item sizes and formats
	Reading an item
	Writing an item
	PutItem
	UpdateItem
	DeleteItem

	Return values
	PutItem
	UpdateItem
	DeleteItem

	Batch operations
	BatchGetItem
	BatchWriteItem

	Atomic counters
	Conditional writes
	Conditional write idempotence
	Capacity units consumed by conditional writes

	Using expressions in DynamoDB
	Referring to item attributes when using expressions in DynamoDB
	Top-level attributes
	Nested attributes
	Accessing list elements
	Accessing map elements

	Document paths

	Expression attribute names (aliases) in DynamoDB
	Reserved words
	Attribute names containing special characters
	Nested attributes
	Repeatedly referencing attribute names

	Using expression attribute values in DynamoDB
	Using projection expressions in DynamoDB
	Using update expressions in DynamoDB
	SET — modifying or adding item attributes
	Modifying attributes
	Adding lists and maps
	Adding elements to a list
	Adding nested map attributes
	Incrementing and decrementing numeric attributes
	Appending elements to a list
	Preventing overwrites of an existing attribute

	REMOVE — deleting attributes from an item
	Removing elements from a list

	ADD — updating numbers and sets
	Adding a number
	Adding elements to a set

	DELETE — removing elements from a set
	Using multiple update expressions

	Condition and filter expressions, operators, and functions in DynamoDB
	Syntax for filter and condition expressions
	Making comparisons
	Functions
	Logical evaluations
	Parentheses
	Precedence in conditions

	DynamoDB condition expression CLI example
	Conditional put
	Conditional deletes
	Conditional updates
	Conditional expression examples
	Checking for attributes in an item
	Checking for attribute type
	Checking string starting value
	Checking for an element in a set
	Checking the size of an attribute value

	Using time to live (TTL) in DynamoDB
	Enable time to live (TTL) in DynamoDB
	Enable DynamoDB TTL using the AWS console
	Enable DynamoDB TTL using the API
	Enable Time to Live using the AWS CLI
	Enable DynamoDB TTL using CloudFormation

	Computing time to live (TTL) in DynamoDB
	Create an item and set the Time to Live
	Update an item and refresh the Time to Live

	Working with expired items and time to live (TTL)
	Filter expired items from read operations
	Conditionally write to expired items
	Identifying deleted items in DynamoDB Streams

	Querying tables in DynamoDB
	Key condition expressions for the Query operation in DynamoDB
	Key condition expression examples

	Filter expressions for the Query operation in DynamoDB
	Paginating table query results in DynamoDB
	Other aspects of working with the Query operation in DynamoDB
	Limiting the number of items in the result set
	Counting the items in the results
	Capacity units consumed by query
	Read consistency for query

	Scanning tables in DynamoDB
	Filter expressions for scan
	Limiting the number of items in the result set
	Paginating the results
	Counting the items in the results
	Capacity units consumed by scan
	Read consistency for scan
	Parallel scan

	PartiQL - a SQL-compatible query language for Amazon DynamoDB
	What is PartiQL?
	PartiQL in Amazon DynamoDB
	Getting started with PartiQL for DynamoDB
	PartiQL data types for DynamoDB
	Examples

	PartiQL statements for DynamoDB
	PartiQL select statements for DynamoDB
	Syntax
	Parameters
	Examples

	PartiQL update statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	PartiQL delete statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	PartiQL insert statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	Use PartiQL functions with DynamoDB
	Aggregate functions
	Conditional functions
	Using the EXISTS function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the BEGINS_WITH function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the MISSING function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the ATTRIBUTE_TYPE function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the CONTAINS function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the SIZE function with PartiQL for amazon DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	PartiQL arithmetic, comparison, and logical operators for DynamoDB
	Arithmetic operators
	Comparison operators
	Logical operators

	Performing transactions with PartiQL for DynamoDB
	Syntax
	Parameters
	Return values
	Examples

	Running batch operations with PartiQL for DynamoDB
	Syntax
	Parameters
	Examples

	IAM security policies with PartiQL for DynamoDB
	
	Example: Allow all PartiQL for DynamoDB statements (Select/Insert/Update/Delete) on a table
	Example: Allow PartiQL for DynamoDB select statements on a table
	Example: Allow PartiQL for DynamoDB insert statements on an index
	Example: Allow PartiQL for DynamoDB transactional statements only on a table
	Example: Allow PartiQL for DynamoDB non-transactional reads and writes and block PartiQL transactional reads and writes transactional statements on a table.
	Example: Allow select statements and deny full table scan statements in PartiQL for DynamoDB

	Working with items: Java
	Putting an item
	Specifying optional parameters
	PutItem and JSON documents

	Getting an item
	Specifying optional parameters
	GetItem and JSON documents

	Batch write: Putting and deleting multiple items
	Batch get: Getting multiple items
	Specifying optional parameters

	Updating an item
	Specifying optional parameters
	Atomic counter

	Deleting an item
	Specifying optional parameters

	Example: CRUD operations using the AWS SDK for Java document API
	Example: Batch operations using AWS SDK for Java document API
	Example: Batch write operation using the AWS SDK for Java document API
	Example: Batch get operation using the AWS SDK for Java document API

	Example: Handling binary type attributes using the AWS SDK for Java document API

	Working with items: .NET
	Putting an item
	Specifying optional parameters

	Getting an item
	Specifying optional parameters

	Updating an item
	Specifying optional parameters

	Atomic counter
	Deleting an item
	Specifying optional parameters

	Batch write: Putting and deleting multiple items
	Batch get: Getting multiple items
	Specifying optional parameters

	Example: CRUD operations using the AWS SDK for .NET low-level API
	Example: Batch operations using the AWS SDK for .NET low-level API
	Example: Batch write operation using the AWS SDK for .NET low-level API
	Example: Batch get operation using the AWS SDK for .NET low-level API

	Example: Handling binary type attributes using the AWS SDK for .NET low-level API

	Improving data access with secondary indexes in DynamoDB
	Using Global Secondary Indexes in DynamoDB
	Scenario: Using a Global Secondary Index
	Attribute projections
	Multi-attribute key schema
	Reading data from a Global Secondary Index
	Querying a Global Secondary Index
	Scanning a Global Secondary Index

	Data synchronization between tables and Global Secondary Indexes
	Table classes with Global Secondary Index
	Provisioned throughput considerations for Global Secondary Indexes
	Read capacity units
	Write capacity units

	Storage considerations for Global Secondary Indexes
	Design patterns
	Multi-attribute keys pattern
	Overview
	Application example
	Data model
	Base table: TournamentMatches
	GSI: TournamentRegionIndex (multi-attribute keys)
	GSI: PlayerMatchHistoryIndex (multi-attribute keys)

	Prerequisites
	Account and permissions
	Development Environment
	Install Required Packages

	Implementation
	Step 1: Create table with GSIs using multi-attribute keys
	Code example

	Step 2: Insert data with native attributes
	Code example

	Step 3: Query TournamentRegionIndex Global Secondary Index with all partition key attributes
	Code example

	Step 4: Query Global Secondary Index sort keys left-to-right
	Code example

	Step 5: Use inequality conditions on Global Secondary Index sort keys
	Code example

	Step 6: Query PlayerMatchHistoryIndex Global Secondary Index with multi-attribute sort key
	Code example

	Pattern variations
	Time-series data with multi-attribute keys
	Code example

	E-commerce orders with multi-attribute keys
	Code example

	Hierarchical organization data
	Code example

	Sparse multi-attribute keys
	Code example

	SaaS multi-tenancy
	Code example

	Financial transactions
	Code example

	Complete example
	Code example
	Code example

	Additional resources

	Managing Global Secondary Indexes in DynamoDB
	Creating a table with Global Secondary Indexes
	Describing the Global Secondary Indexes on a table
	Adding a Global Secondary Index to an existing table
	Phases of index creation
	Adding a Global Secondary Index to a large table

	Deleting a Global Secondary Index
	Modifying a Global Secondary Index during creation

	Detecting and correcting index key violations in DynamoDB
	Downloading and running Violation Detector
	The Violation Detector configuration file
	Detection
	Correction

	Working with Global Secondary Indexes: Java
	Create a table with a Global Secondary Index
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes using the AWS SDK for Java document API

	Working with Global Secondary Indexes: .NET
	Create a table with a Global Secondary Index
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes using the AWS SDK for .NET low-level API

	Working with Global Secondary Indexes in DynamoDB using AWS CLI
	Create a table with a Global Secondary Index
	Add a Global Secondary Index to an existing table
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index

	Local secondary indexes
	Scenario: Using a Local Secondary Index
	Attribute projections
	Creating a Local Secondary Index
	Reading data from a Local Secondary Index
	Querying a Local Secondary Index
	Scanning a Local Secondary Index

	Item writes and Local Secondary Indexes
	Provisioned throughput considerations for Local Secondary Indexes
	Read capacity units
	Write capacity units

	Storage considerations for Local Secondary Indexes
	Item collections in Local Secondary Indexes
	Item collection size limit
	Item collections and partitions

	Working with Local Secondary Indexes: Java
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes using the Java document API

	Working with Local Secondary Indexes: .NET
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes using the AWS SDK for .NET low-level API

	Working with Local Secondary Indexes in DynamoDB AWS CLI
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index

	Managing complex workflows with DynamoDB transactions
	Amazon DynamoDB Transactions: How it works
	TransactWriteItems API
	Idempotency
	Error handling for writing

	TransactGetItems API
	Error handling for reading

	Isolation levels for DynamoDB transactions
	SERIALIZABLE
	READ-COMMITTED
	Operation summary

	Transaction conflict handling in DynamoDB
	Using transactional APIs in DynamoDB Accelerator (DAX)
	Capacity management for transactions
	Best practices for transactions
	Using transactional APIs with global tables
	DynamoDB Transactions vs. the AWSLabs transactions client library

	Using IAM with DynamoDB transactions
	Example 1: Allow transactional operations
	Example 2: Allow only transactional operations
	Example 3: Allow nontransactional reads and writes, and block transactional reads and writes
	Example 4: Prevent information from being returned on a ConditionCheck failure

	DynamoDB transactions example
	Making an order
	Validate the customer
	Update the product status
	Create the order
	Run the transaction

	Reading the order details

	Change data capture with Amazon DynamoDB
	Streaming options for change data capture
	Using Kinesis Data Streams to capture changes to DynamoDB
	How Kinesis Data Streams works with DynamoDB
	Turning on a Kinesis data stream for your DynamoDB table
	Making changes to a Kinesis Data Streams destination on your DynamoDB table

	Getting started with Kinesis Data Streams for Amazon DynamoDB
	Creating an active Amazon Kinesis data stream
	Making changes to an active Amazon Kinesis data stream

	Using shards and metrics with DynamoDB Streams and Kinesis Data Streams
	Shard management considerations for Kinesis Data Streams
	Monitoring change data capture with Kinesis Data Streams

	Using IAM policies for Amazon Kinesis Data Streams and Amazon DynamoDB
	Example: Enable Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Update Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Disable Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Selectively apply permissions for Amazon Kinesis Data Streams for Amazon DynamoDB based on resource
	Using service-linked roles for Kinesis Data Streams for DynamoDB
	Service-linked role permissions for Kinesis Data Streams for DynamoDB
	Creating a service-linked role for Kinesis Data Streams for DynamoDB
	Editing a service-linked role for Kinesis Data Streams for DynamoDB
	Deleting a service-linked role for Kinesis Data Streams for DynamoDB

	Change data capture for DynamoDB Streams
	Endpoints for DynamoDB Streams
	Enabling a stream
	Reading and processing a stream
	Shard discovery
	Data retention limit for DynamoDB Streams

	DynamoDB Streams and Time to Live
	Using DynamoDB Streams and Lambda to archive TTL deleted items
	DynamoDB Time to Live event filter pattern
	Create an AWS Lambda event source mapping

	Using the DynamoDB Streams Kinesis adapter to process stream records
	Migrating from KCL 1.x to KCL 3.x
	Overview
	Migration steps
	Step 1: Migrate the record processor
	Step 2: Migrate the record processor factory
	Step 3: Migrate the worker
	Step 4: KCL 3.x configuration overview and recommendations
	Configurations with update default value in KCL 3.x
	New configurations in KCL 3.x

	Step 5: Migrate from KCL 2.x to KCL 3.x

	Roll back to the previous KCL version
	Step 1: Run the KCL Migration Tool
	Parameters

	Step 2: Redeploy the code with the previous KCL version

	Roll forward to KCL 3.x after a rollback
	Step 1: Run the KCL Migration Tool
	Parameters

	Step 2: Deploy the code with KCL 3.x

	Walkthrough: DynamoDB Streams Kinesis adapter
	Step 1: Create DynamoDB tables
	Step 2: Generate update activity in source table
	Step 3: Process the stream
	Step 4: Ensure that both tables have identical contents
	Step 5: Clean up
	Complete program: DynamoDB Streams Kinesis adapter
	StreamsAdapterDemo.java
	StreamsRecordProcessor.java
	StreamsRecordProcessorFactory.java
	StreamsAdapterDemoHelper.java

	DynamoDB Streams low-level API: Java example
	DynamoDB Streams and AWS Lambda triggers
	Tutorial #1: Using filters to process all events with Amazon DynamoDB and AWS Lambda using the AWS CLI
	Step 1: Create a DynamoDB table with a stream enabled
	Step 2: Create a Lambda execution role
	Step 3: Create an Amazon SNS topic
	Step 4: Create and test a Lambda function
	Step 5: Create and test a trigger

	Tutorial #2: Using filters to process some events with DynamoDB and Lambda
	Putting it all together - CloudFormation
	Putting it all together - CDK

	Best practices using DynamoDB Streams with Lambda

	DynamoDB Streams and Apache Flink
	Using the ShardFilter parameter with DynamoDB Streams connector for Apache Flink

	In-memory acceleration with DynamoDB Accelerator (DAX)
	Use cases for DAX
	DAX usage notes
	DAX: How it works
	How DAX processes requests
	Read operations
	Write operations
	Other operations
	Request rate limiting

	Item cache
	Query cache

	DAX cluster components
	Nodes
	Clusters
	Regions and availability zones
	Parameter groups
	Security groups
	Cluster ARN
	Cluster endpoint
	Node endpoints
	Subnet groups
	Events
	Maintenance window

	Creating a DAX cluster
	Creating an IAM service role for DAX to access DynamoDB
	Permissions required to create a service role
	Troubleshooting

	DAX and IPv6
	Creating a DAX cluster using the AWS CLI
	Step 1: Create an IAM service role for DAX to access DynamoDB using the AWS CLI
	Step 2: Create a subnet group
	Step 3: Create a DAX cluster using the AWS CLI
	Step 4: Configure security group inbound rules using the AWS CLI

	Creating a DAX cluster using the the console
	Step 1: Create a subnet group using the the console
	Step 2: Create a DAX cluster using the the console
	Step 3: Configure security group inbound rules using the the console

	DAX and DynamoDB consistency models
	Consistency among DAX cluster nodes
	DAX item cache behavior
	Consistency of reads
	Consistency of writes
	How DAX processes writes

	DAX query cache behavior
	Consistency of query-update-query

	Strongly consistent and transactional reads
	Negative caching
	Strategies for writes
	Write-through
	Write-around

	Developing with the DynamoDB Accelerator (DAX) client
	Tutorial: Running a sample application using DynamoDB Accelerator (DAX)
	Step 1: Launch an Amazon EC2 instance
	Step 2: Create a user and policy
	Sign up for an AWS account
	Create a user with administrative access

	Step 3: Configure an Amazon EC2 instance
	Step 4: Run a sample application
	Node.js and DAX
	Default client configuration for Node.js
	Migrating to DAX Node.js SDK V3
	V2 Node.js DAX usage
	V3 Node.js DAX usage

	TryDax sample code
	Features not in parity with AWS SDK V3
	TryDax.js

	DAX SDK for Go
	Features not in parity with AWS SDK for Go V2
	Default client configuration for Go
	DAX Go SDK Client Defaults
	Client creation

	Migrating to DAX Go SDK V2
	V1 DAX Go SDK usage
	V2 DAX Go SDK usage

	Java and DAX
	Using the client as a Maven dependency
	TryDax sample code
	SDK metrics
	TryDax.java

	.NET and DAX
	01-CreateTable.cs
	02-Write-Data.cs
	03-GetItem-Test.cs
	04-Query-Test.cs
	05-Scan-Test.cs
	06-DeleteTable.cs

	Python and DAX
	01-create-table.py
	02-write-data.py
	03-getitem-test.py
	04-query-test.py
	05-scan-test.py
	06-delete-table.py

	Modifying an existing application to use DAX

	Managing DAX clusters
	IAM permissions for managing a DAX cluster
	Scaling a DAX cluster
	Horizontal scaling
	Vertical scaling

	Customizing DAX cluster settings
	Configuring TTL settings
	Tagging support for DAX
	Using the the console
	Using the AWS CLI

	AWS CloudTrail integration
	Deleting a DAX cluster

	Monitoring DynamoDB Accelerator
	Monitoring tools for DynamoDB Accelerator
	Automated monitoring tools
	Manual monitoring tools

	Monitoring with Amazon CloudWatch
	How do I use DAX metrics?
	Viewing DAX metrics and dimensions
	DAX metrics and dimensions
	DAX Metrics
	Dimensions for DAX Metrics

	Creating CloudWatch alarms to monitor DAX
	How can I be notified of query cache misses?
	How can I be notified if requests cause an internal error in the cluster?

	Production monitoring

	Logging DAX operations using AWS CloudTrail

	DAX T3/T2 burstable instances
	DAX T2 instance family
	DAX T3 instance family

	DAX access control
	IAM service role for DAX
	IAM policy to allow DAX cluster access
	Case study: Accessing DynamoDB and DAX
	Access to DynamoDB, but no access with DAX
	Read-only access to DynamoDB (only)
	Read/write access to DynamoDB (only)

	Access to DynamoDB and to DAX
	Read-only access to DynamoDB and read-only access to DAX
	Read/write access to DynamoDB and read-only with DAX
	Read/write access to DynamoDB and read/write access to DAX

	Access to DynamoDB via DAX, but no direct access to DynamoDB

	DAX encryption at rest
	Enabling encryption at rest using the the console

	DAX encryption in transit
	Using service-linked IAM roles for DAX
	Service-linked role permissions for DAX
	Creating a service-linked role for DAX
	Editing a service-linked role for DAX
	Deleting a service-linked role for DAX
	Cleaning up a service-linked role
	Deleting all of your DAX clusters
	Deleting the service-linked role

	Accessing DAX across AWS accounts
	Set up IAM
	Set up a VPC
	Modify the DAX client to allow cross-account access

	DAX cluster sizing guide
	Overview
	Estimating traffic
	Estimating cache hit rate
	Estimating read and write capacity units

	Load testing

	Data modeling for DynamoDB tables
	Item collections - how to model one-to-many relationships in DynamoDB
	Speed up queries by organizing your data with item collections

	Data Modeling foundations in DynamoDB
	Single table design foundation
	Multiple table design foundation

	Data modeling building blocks in DynamoDB
	Composite sort key building block
	Multi-tenancy building block
	Sparse index building block
	Time to live building block
	Time to live for archival building block
	Vertical partitioning building block
	Write sharding building block

	Data modeling schema design packages in DynamoDB
	Prerequisites
	Social network schema design in DynamoDB
	Social network business use case
	Social network entity relationship diagram
	Social network access patterns
	Social network schema design evolution
	Social network final schema
	Using NoSQL Workbench with this schema design

	Gaming profile schema design in DynamoDB
	Gaming profile business use case
	Gaming profile entity relationship diagram
	Gaming profile access patterns
	Gaming profile schema design evolution
	Gaming profile final schema
	Using NoSQL Workbench with this schema design

	Complaint management system schema design in DynamoDB
	Complaint management system business use case
	Complaint management system architecture diagram
	Complaint management system entity relationship diagram
	Complaint management system access patterns
	Complaint management system schema design evolution
	Complaint management system final schema
	Using NoSQL Workbench with this schema design

	Recurring payments schema design in DynamoDB
	Recurring payments business use case
	Recurring payments entity relationship diagram
	Recurring payments system access patterns
	Recurring payments schema design
	Recurring payments final schema
	Using NoSQL Workbench with this schema design

	Monitoring device status updates in DynamoDB
	Use case
	Entity relationship diagram
	Access patterns
	Schema design evolution
	Final schema
	Using NoSQL Workbench with this schema design

	Using DynamoDB as a data store for an online shop
	Use case
	Entity relationship diagram
	Access patterns
	Schema design evolution
	Online shop final schema

	Using NoSQL Workbench with this schema design

	Best practices for modeling relational data in DynamoDB
	Traditional relational database models
	How DynamoDB eliminates the need for JOIN operations
	How DynamoDB transactions eliminate overhead to the write process
	First steps for modeling relational data in DynamoDB
	Example of modeling relational data in DynamoDB

	Migrating to DynamoDB from a relational database
	Reasons to migrate to DynamoDB
	Considerations when migrating a relational database to DynamoDB
	Understanding how a migration to DynamoDB works
	Tools to help migrate to DynamoDB
	Choosing the appropriate strategy to migrate to DynamoDB
	Performing an offline migration to DynamoDB
	Performing a hybrid migration to DynamoDB
	Performing an online migration to DynamoDB by migrating each table 1:1
	Perform an online migration to DynamoDB using a custom staging table

	NoSQL Workbench for DynamoDB
	Download NoSQL Workbench for DynamoDB
	Install NoSQL Workbench for DynamoDB
	Building data models with NoSQL Workbench
	Creating a new data model
	Importing an existing data model
	Exporting a data model
	Editing an existing data model

	Visualizing data access patterns
	Adding sample data to a data model
	Importing sample data from a CSV file
	Viewing data access patterns
	Viewing all tables in a data model using aggregate view
	Committing a data model to DynamoDB

	Exploring datasets and building operations with NoSQL Workbench
	Connecting to live datasets
	Building complex operations
	Building PartiQL statements
	Singleton statements
	Transactions
	Batch

	Building API operations
	Delete table
	Delete GSI
	Create table
	Create GSI
	Update table
	Update GSI
	Put item
	Update item
	Delete item
	Duplicate item
	Query
	Scan
	TransactGetItems
	TransactWriteItems

	Cloning tables with NoSQL Workbench
	Exporting data to a CSV file

	Sample data models for NoSQL Workbench
	Employee data model
	Discussion forum data model
	Music library data model
	Ski resort data model
	Credit card offers data model
	Bookmarks data model

	Release history for NoSQL Workbench

	Backup and restore for DynamoDB
	Point-in-time backups for DynamoDB
	Before you begin
	Enable point-in-time recovery in DynamoDB
	Enabling point-in-time recovery
	Enable PITR (console)
	Enable PITR (AWS CLI)
	Enable PITR (CloudFormation)
	Enable PITR (API)
	Recovery Period
	Edit PITR
	Delete a table with PITR enabled

	Using on-demand DynamoDB backup and restore
	Backing up and restoring DynamoDB tables with DynamoDB: How it works
	Backups
	Restores

	Backing up a DynamoDB table
	Creating a table backup (console)
	Creating a table backup (AWS CLI)

	Restoring a DynamoDB table from a backup
	Restoring a table from a backup (console)
	Restoring a table from a backup (AWS CLI)

	Deleting a DynamoDB table backup
	Deleting a table backup (console)
	Deleting a table backup (AWS CLI)

	Using IAM with DynamoDB backup and restore
	Example 1: Allow the CreateBackup and RestoreTableFromBackup actions
	Example 2: Allow CreateBackup and deny RestoreTableFromBackup
	Example 3: Allow ListBackups and deny CreateBackup and RestoreTableFromBackup
	Example 4: Allow ListBackups and deny DeleteBackup
	Example 5: Allow RestoreTableFromBackup and DescribeBackup for all resources and deny DeleteBackup for a specific backup
	Example 6: Allow CreateBackup for a specific table
	Example 7: Allow ListBackups
	Example 8: Allow access to AWS Backup features
	Example 9: Deny RestoreTableToPointInTime for a Specific Source Table
	Example 10: Deny RestoreTableFromBackup for all Backups for a Specific Source Table

	Understanding Amazon DynamoDB billing for backups
	How it works
	DynamoDB backup billing example

	Restore a table in DynamoDB
	Restoring a table using point-in-time recovery
	Restoring a DynamoDB table to a point in time
	Restoring a DynamoDB table to a point in time (console)
	Restoring a table to a point in time (AWS CLI)

	Using AWS Backup with DynamoDB
	Backing up and restoring DynamoDB tables with AWS Backup: How it works
	Backups
	Restores

	Creating backups of DynamoDB tables with AWS Backup
	Turning on AWS Backup features
	On-demand backups
	Scheduled backups

	Copying a backup of a DynamoDB table with AWS Backup
	Restoring a backup of a DynamoDB table from AWS Backup
	Restoring a DynamoDB table from AWS Backup
	Restoring a DynamoDB table to another Region or account

	Deleting a backup of a DynamoDB table with AWS Backup
	Usage note differences between on-demand backups managed by AWS Backup and DynamoDB

	Code examples for DynamoDB using AWS SDKs
	Hello DynamoDB
	Basic examples for DynamoDB using AWS SDKs
	Hello DynamoDB
	Learn the basics of DynamoDB with an AWS SDK
	Actions for DynamoDB using AWS SDKs
	Use BatchExecuteStatement with an AWS SDK
	Use BatchGetItem with an AWS SDK or CLI
	Use BatchWriteItem with an AWS SDK or CLI
	Use CreateTable with an AWS SDK or CLI
	Use DeleteItem with an AWS SDK or CLI
	Use DeleteTable with an AWS SDK or CLI
	Use DescribeTable with an AWS SDK or CLI
	Use DescribeTimeToLive with an AWS SDK or CLI
	Use ExecuteStatement with an AWS SDK
	Use GetItem with an AWS SDK or CLI
	Use ListTables with an AWS SDK or CLI
	Use PutItem with an AWS SDK or CLI
	Use Query with an AWS SDK or CLI
	Use Scan with an AWS SDK or CLI
	Use UpdateItem with an AWS SDK or CLI
	Use UpdateTable with an AWS SDK or CLI
	Use UpdateTimeToLive with an AWS SDK or CLI

	Scenarios for DynamoDB using AWS SDKs
	Accelerate DynamoDB reads with DAX using an AWS SDK
	Work with advanced DynamoDB Global Secondary Index scenarios using AWS Command Line Interface v2
	Build an application to submit data to a DynamoDB table
	Compare multiple values with a single attribute in DynamoDB with an AWS SDK
	Conditionally update a DynamoDB item with a TTL using an AWS SDK
	Connect to a local DynamoDB instance using an AWS SDK
	Count expression operators in DynamoDB with an AWS SDK
	Create an API Gateway REST API to track COVID-19 data
	Create a messenger application with Step Functions
	Create a photo asset management application that lets users manage photos using labels
	Create a DynamoDB table with a Global Secondary Index using the AWS SDK
	Create a DynamoDB table with warm throughput setting using an AWS SDK
	Create a web application to track DynamoDB data
	Create a websocket chat application with API Gateway
	Create a DynamoDB item with a TTL using an AWS SDK
	Create and manage DynamoDB global tables with Multi-Region Strong Consistency using an AWS SDK
	Create and manage DynamoDB global tables demonstrating MREC using an AWS SDK
	Delete DynamoDB data using PartiQL DELETE statements with an AWS SDK
	Detect PPE in images with Amazon Rekognition using an AWS SDK
	Insert DynamoDB data using PartiQL INSERT statements with an AWS SDK
	Invoke a Lambda function from a browser
	Manage DynamoDB Global Secondary Indexes using AWS Command Line Interface v2
	Manage DynamoDB resource-based policies using AWS Command Line Interface v2
	Monitor performance of Amazon DynamoDB using an AWS SDK
	Perform advanced DynamoDB query operations using an AWS SDK
	Perform list operations in DynamoDB with an AWS SDK
	Perform map operations in DynamoDB with an AWS SDK
	Perform set operations in DynamoDB with an AWS SDK
	Query a DynamoDB table by using batches of PartiQL statements and an AWS SDK
	Query a DynamoDB table using PartiQL and an AWS SDK
	Query a DynamoDB table using a Global Secondary Index with an AWS SDK
	Query a DynamoDB table using a begins_with condition with an AWS SDK
	Query a DynamoDB table using a date range in the sort key with an AWS SDK
	Query a DynamoDB table with a complex filter expression with an AWS SDK
	Query a DynamoDB table with a dynamic filter expression with an AWS SDK
	Query a DynamoDB table with a filter expression and limit with an AWS SDK
	Query a DynamoDB table with nested attributes using an AWS SDK
	Query a DynamoDB table with pagination using an AWS SDK
	Query a DynamoDB table with strongly consistent reads using an AWS SDK
	Query DynamoDB data using PartiQL SELECT statements with an AWS SDK
	Query a DynamoDB table for TTL items using an AWS SDK
	Query DynamoDB tables using date and time patterns with an AWS SDK
	Save EXIF and other image information using an AWS SDK
	Set up Attribute-Based Access Control for DynamoDB using AWS Command Line Interface v2
	Understand update expression order in DynamoDB with an AWS SDK
	Update a DynamoDB table setting with warm throughput using an AWS SDK
	Update a DynamoDB item with a TTL using an AWS SDK
	Update DynamoDB data using PartiQL UPDATE statements with an AWS SDK
	Use API Gateway to invoke a Lambda function
	Use Step Functions to invoke Lambda functions
	Use a document model for DynamoDB using an AWS SDK
	Use a high-level object persistence model for DynamoDB using an AWS SDK
	Use atomic counter operations in DynamoDB with an AWS SDK
	Use conditional operations in DynamoDB with an AWS SDK
	Use expression attribute names in DynamoDB with an AWS SDK
	Use scheduled events to invoke a Lambda function
	Work with DynamoDB Local Secondary Indexes using AWS Command Line Interface v2
	Work with DynamoDB Streams and Time-to-Live using AWS Command Line Interface v2
	Work with DynamoDB global tables and multi-Region replication with eventual consistency (MREC) using AWS Command Line Interface v2
	Work with DynamoDB resource tagging using AWS Command Line Interface v2
	Work with DynamoDB table encryption using AWS Command Line Interface v2

	Serverless examples for DynamoDB
	Invoke a Lambda function from a DynamoDB trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger

	AWS community contributions for DynamoDB
	Build and test a serverless application

	Security and compliance in Amazon DynamoDB
	AWS managed policies for Amazon DynamoDB
	AWS managed policy: DynamoDBReplicationServiceRolePolicy
	AWS managed policy: AmazonDynamoDBFullAccess_v2
	AWS managed policy: AmazonDynamoDBReadOnlyAccess
	DynamoDB updates to AWS managed policies

	Using resource-based policies for DynamoDB
	Create a table with a resource-based policy
	AWS CLI
	the console
	AWS CloudFormation template

	Attach a policy to an DynamoDB existing table
	AWS CLI example to attach a new policy
	AWS CLI example to conditionally update an existing policy
	the console
	AWS SDK for Java 2.x

	Attach a resource-based policy to a DynamoDB stream
	AWS CLI
	the console

	Remove a resource-based policy from a DynamoDB table
	AWS CLI
	the console

	Cross-account access with resource-based policies in DynamoDB
	Blocking public access with resource-based policies in DynamoDB
	DynamoDB API operations supported by resource-based policies
	Data plane API operations
	PartiQL API operations
	Control plane API operations
	Version 2019.11.21 (Current) global tables API operations
	Version 2017.11.29 (Legacy) global tables API operations
	Tags API operations
	Backup and Restore API operations
	Continuous Backup/Restore (PITR) API operations
	Contributor Insights API operations
	Export API operations
	Import API operations
	Amazon Kinesis Data Streams API operations
	Resource-based policy API operations
	Time-to-Live API operations
	Other API operations
	DynamoDB Streams API operations

	Authorization with IAM identity-based policies and DynamoDB resource-based policies
	DynamoDB resource-based policy examples
	Resource-based policy for a table
	Resource-based policy for a stream
	Resource-based policy for access to perform all actions on specified resources
	Resource-based policy for cross-account access
	Resource-based policy with IP address conditions
	Resource-based policy using an IAM role

	DynamoDB resource-based policy considerations
	DynamoDB resource-based policy best practices
	Simplify access control to DynamoDB resources
	Protect your DynamoDB resources with resource-based policies
	Apply least-privilege permissions
	Analyze cross-account access activity for generating least-privilege policies
	Use IAM Access Analyzer to generate least-privilege policies

	Using attribute-based access control with DynamoDB
	Why should I use ABAC?
	Condition keys to implement ABAC with DynamoDB
	Considerations for using ABAC with DynamoDB
	Enabling ABAC in DynamoDB
	Attribute-based access control – not enabled
	Auditing your policies before enabling ABAC
	IAM permissions required to enable ABAC
	Enabling ABAC in console

	Using ABAC with DynamoDB tables and indexes
	Step 1: Add tags to a DynamoDB table
	Step 2: Create an IAM role with a policy including tag-based conditions
	Step 3: Test allowed permissions

	Examples for using ABAC with DynamoDB tables and indexes
	Example 1: Allow an action using aws:ResourceTag
	Example 2: Allow an action using aws:RequestTag
	Example 3: Deny an action using aws:TagKeys

	Troubleshooting common ABAC errors for DynamoDB tables and indexes
	Service-specific condition keys in policies result in an error
	Unable to opt out of ABAC

	Data protection in DynamoDB
	DynamoDB encryption at rest
	DynamoDB encryption at rest: How it works
	AWS owned keys
	AWS managed keys
	Customer managed keys
	Notes on using AWS managed keys

	DynamoDB encryption at rest usage notes
	All table data is encrypted
	Encryption types
	Using KMS keys and data keys
	Authorizing use of your KMS key
	Key policy for an AWS managed key
	Key policy for a customer managed key
	Using grants to authorize DynamoDB

	DynamoDB encryption context
	Monitoring DynamoDB interaction with AWS KMS

	Managing encrypted tables in DynamoDB
	Specifying the encryption key for a new table
	Creating an encrypted table (console)
	Creating an encrypted table (AWS CLI)

	Updating an encryption key
	Updating an encryption key (console)
	Updating an encryption key (AWS CLI)

	Securing DynamoDB connections using VPC endpoints and IAM policies"
	Required policy for endpoints
	Traffic between service and on-premises clients and applications
	Traffic between AWS resources in the same Region

	AWS Identity and Access Management (IAM) and DynamoDB
	Identity and Access Management for Amazon DynamoDB
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	How Amazon DynamoDB works with IAM
	Identity-based policies for DynamoDB
	Identity-based policy examples for DynamoDB

	Resource-based policies within DynamoDB
	Policy actions for DynamoDB
	Policy resources for DynamoDB
	Policy condition keys for DynamoDB
	Access control lists (ACLs) in DynamoDB
	Attribute-based access control (ABAC) with DynamoDB
	Using Temporary credentials with DynamoDB
	Cross-service principal permissions for DynamoDB
	Service roles for DynamoDB
	Service-linked roles for DynamoDB
	Supported service-linked roles in DynamoDB

	Identity-based policy examples for Amazon DynamoDB
	Policy best practices
	Using the DynamoDB console
	Allow users to view their own permissions
	Using identity-based policies with Amazon DynamoDB
	IAM permissions required to use the Amazon DynamoDB console
	AWS managed (predefined) IAM policies for Amazon DynamoDB
	Customer managed policy examples
	IAM policy to grant permissions to all DynamoDB actions on a table
	IAM policy to grant read-only permissions on items in a DynamoDB table
	IAM policy to grant access to a specific DynamoDB table and its indexes
	IAM policy to read, write, update, and delete access on a DynamoDB table
	IAM policy to separate DynamoDB environments in the same AWS account
	IAM policy to prevent the purchase of DynamoDB reserved capacity
	IAM policy to grant read access for a DynamoDB stream only (not for the table)
	IAM policy to allow an AWS Lambda function to access DynamoDB stream records
	IAM policy for read and write access to a DynamoDB Accelerator (DAX) cluster

	Troubleshooting Amazon DynamoDB identity and access
	I am not authorized to perform an action in DynamoDB
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my DynamoDB resources

	IAM policy to prevent the purchase of DynamoDB reserved capacity

	Using IAM policy conditions for fine-grained access control
	Overview
	Permissions use case

	Specifying conditions: Using condition keys
	Limiting user access
	Example policies: Using conditions for fine-grained access control
	1: Grant permissions that limit access to items with a specific partition key value
	2: Grant permissions that limit access to specific attributes in a table
	3: Grant permissions to prevent updates on certain attributes
	4: Grant permissions to query only projected attributes in an index
	5: Grant permissions to limit access to certain attributes and partition key values

	Related topics
	Using web identity federation
	Additional resources for web identity federation
	Example policy for web identity federation
	Preparing to use web identity federation
	Generating an IAM policy using the DynamoDB console

	Writing your app to use web identity federation

	DynamoDB API permissions: Actions, resources, and conditions reference
	Related topics

	Compliance validation by industry for DynamoDB
	Resilience and disaster recovery in Amazon DynamoDB
	Infrastructure security in Amazon DynamoDB
	Using Amazon VPC endpoints to access DynamoDB
	Sharing Amazon VPC endpoints and DynamoDB
	Tutorial: Using a VPC endpoint for DynamoDB
	Step 1: Launch an Amazon EC2 instance
	Step 2: Configure your Amazon EC2 instance
	Step 3: Create a VPC endpoint for DynamoDB
	Step 4: (Optional) Clean up

	AWS PrivateLink for DynamoDB
	Types of Amazon VPC endpoints for Amazon DynamoDB
	Considerations when using AWS PrivateLink for Amazon DynamoDB
	Creating an Amazon VPC endpoint
	Accessing Amazon DynamoDB interface endpoints
	Accessing DynamoDB tables and control API operations from DynamoDB interface endpoints
	AWS CLI examples
	AWS SDK examples

	Updating an on-premises DNS configuration
	Using interface endpoints to access DynamoDB without a gateway endpoint or an internet gateway in the Amazon VPC
	Using gateway endpoints and interface endpoints together in the same Amazon VPC to access DynamoDB

	Creating an Amazon VPC endpoint policy for DynamoDB
	Example: Restricting access to a specific table from an Amazon VPC endpoint

	Using DynamoDB endpoints with AWS Management Console Private Access
	AWS PrivateLink for DynamoDB Streams
	Considerations when using AWS PrivateLink for Amazon DynamoDB Streams
	Creating an Amazon VPC endpoint
	Accessing Amazon DynamoDB Streams interface endpoints
	Accessing DynamoDB Streams API operations from DynamoDB Streams interface endpoints
	AWS CLI examples

	AWS SDK examples
	Creating an Amazon VPC endpoint policy for DynamoDB Streams
	Example: Restricting access to a specific stream from an Amazon VPC endpoint

	Using DynamoDB endpoints with AWS Management Console Private Access

	Using AWS PrivateLink for DynamoDB Accelerator (DAX)
	Considerations when using AWS PrivateLink for DynamoDB Accelerator (DAX)
	How AWS PrivateLink works with DAX
	Creating Interface Endpoints for DAX
	Additional resources

	Configuration and vulnerability analysis in Amazon DynamoDB
	Security best practices for Amazon DynamoDB
	DynamoDB preventative security best practices
	DynamoDB detective security best practices

	Monitoring and logging in DynamoDB
	Monitoring plan
	Performance baseline
	Integrated services
	Automated monitoring tools
	Monitoring metrics in DynamoDB with Amazon CloudWatch
	How do I use DynamoDB metrics?
	Viewing metrics in the CloudWatch console
	Viewing metrics in the AWS CLI
	DynamoDB Metrics and dimensions
	Viewing metrics and dimensions
	DynamoDB metrics
	
	AccountMaxReads
	AccountMaxTableLevelReads
	AccountMaxTableLevelWrites
	AccountMaxWrites
	AccountProvisionedReadCapacityUtilization
	AccountProvisionedWriteCapacityUtilization
	AgeOfOldestUnreplicatedRecord
	ConditionalCheckFailedRequests
	ConsumedChangeDataCaptureUnits
	ConsumedReadCapacityUnits
	ConsumedWriteCapacityUnits
	FailedToReplicateRecordCount
	MaxProvisionedTableReadCapacityUtilization
	MaxProvisionedTableWriteCapacityUtilization
	OnDemandMaxReadRequestUnits
	OnDemandMaxWriteRequestUnits
	OnlineIndexConsumedWriteCapacity
	OnlineIndexPercentageProgress
	OnlineIndexThrottleEvents
	PendingReplicationCount
	ProvisionedReadCapacityUnits
	ProvisionedWriteCapacityUnits
	ReadAccountLimitThrottleEvents
	ReadKeyRangeThroughputThrottleEvents
	ReadMaxOnDemandThroughputThrottleEvents
	ReadProvisionedThroughputThrottleEvents
	ReadThrottleEvents
	ReplicationLatency
	ReturnedBytes
	ReturnedItemCount
	ReturnedRecordsCount
	SuccessfulRequestLatency
	SystemErrors
	TimeToLiveDeletedItemCount
	ThrottledPutRecordCount
	ThrottledRequests
	TransactionConflict
	UserErrors
	WriteAccountLimitThrottleEvents
	WriteKeyRangeThroughputThrottleEvents
	WriteMaxOnDemandThroughputThrottleEvents
	WriteProvisionedThroughputThrottleEvents
	WriteThrottleEvents

	Usage metrics
	AccountProvisionedWriteCapacityUnits
	AccountProvisionedReadCapacityUnits
	TableCount

	Understanding metrics and dimensions for DynamoDB
	DelegatedOperation
	GlobalSecondaryIndexName
	Operation
	OperationType
	Verb
	ReceivingRegion
	StreamLabel
	TableName

	Creating CloudWatch alarms in DynamoDB
	Creating an alarm in the CloudWatch console
	Creating an alarm in the AWS CLI
	More AWS CLI examples

	Logging DynamoDB operations by using AWS CloudTrail
	DynamoDB information in CloudTrail
	Control plane events in CloudTrail
	DynamoDB data plane events in CloudTrail

	Understanding DynamoDB log file entries
	UpdateTable
	DeleteTable
	CreateCluster
	PutItem (Successful)
	UpdateItem (Unsuccessful)
	TransactWriteItems (Successful)
	TransactWriteItems (With TransactionCanceledException)
	ExecuteStatement
	BatchExecuteStatement
	GetRecords

	Analyzing data access using CloudWatch contributor insights for DynamoDB
	CloudWatch contributor insights for DynamoDB: How it works
	CloudWatch contributor insights modes for DynamoDB
	Throttled keys mode
	Accessed and throttled keys mode
	Switching between modes

	CloudWatch contributor insights for DynamoDB rules
	Rules for accessed and throttled keys mode
	Rules for throttled keys mode

	Understanding CloudWatch contributor insights for DynamoDB graphs
	Graph availability by mode
	Most accessed items
	Most throttled items
	Report examples

	Interactions with other DynamoDB features
	Global tables
	DynamoDB Accelerator (DAX)
	Encryption at rest
	Fine-grained access control
	Access control

	CloudWatch contributor insights for DynamoDB billing
	Billing by mode
	Billing examples
	Common billing factors

	Getting started with CloudWatch Contributor Insights for DynamoDB
	Choosing a Contributor Insights mode
	Using Contributor Insights (console)
	Switching between modes
	Creating CloudWatch alarms

	Using Contributor Insights (AWS CLI)
	Basic operations with default mode
	Enabling throttled keys mode
	Switching between modes
	Managing Contributor Insights
	Example responses
	Accessed and throttled keys mode response
	Throttled keys mode response

	Using IAM with CloudWatch contributor insights for DynamoDB
	
	Example: Enable or disable CloudWatch contributor insights for DynamoDB
	Example: Retrieve CloudWatch contributor insights rule report
	Example: Selectively apply CloudWatch contributor insights for DynamoDB permissions based on resource
	Using service-linked roles for CloudWatch Contributor Insights for DynamoDB
	Service-linked role permissions for CloudWatch Contributor Insights for DynamoDB
	Creating a service-linked role for CloudWatch Contributor Insights for DynamoDB
	Editing a service-linked role for CloudWatch Contributor Insights for DynamoDB
	Deleting a service-linked role for CloudWatch Contributor Insights for DynamoDB

	Best practices for designing and architecting with DynamoDB
	NoSQL design for DynamoDB
	Differences between relational data design and NoSQL
	Two key concepts for NoSQL design
	Approaching NoSQL design
	NoSQL Workbench for DynamoDB

	Using the DynamoDB Well-Architected Lens to optimize your DynamoDB workload
	Optimizing costs on DynamoDB tables
	Evaluate your costs at the table level
	How to view the costs of a single DynamoDB table
	Cost Explorer's default view
	How to use and apply table tags in Cost Explorer

	Evaluate your DynamoDB table's capacity mode
	What table capacity modes are available
	When to select on-demand capacity mode
	When to select provisioned capacity mode
	Additional factors to consider when choosing a table capacity mode

	Evaluate your DynamoDB table's auto scaling settings
	Understanding your auto scaling settings
	How to identify tables with low target utilization (<=50%)
	How to address workloads with seasonal variance
	How to address spiky workloads with unknown patterns
	How to address workloads with linked applications

	Evaluate your DynamoDB table class selection
	What table classes are available
	When to select the DynamoDB Standard table class
	When to select DynamoDB Standard-IA table class
	Additional factors to consider when choosing a table class

	Identify your unused resources in DynamoDB
	How to identify unused resources
	Identifying unused table resources
	Cleaning up unused table resources
	Identifying unused GSI resources
	Cleaning up unused GSI resources
	Cleaning up unused global tables
	Cleaning up unused backups or point-in-time recovery (PITR)

	Evaluate your DynamoDB table usage patterns
	Perform fewer strongly-consistent read operations
	Perform fewer transactions for read operations
	Perform fewer scans
	Shorten attribute names
	Enable Time to Live (TTL)
	Replace global tables with cross-Region backups

	Evaluate your DynamoDB streams usage
	Optimizing costs for DynamoDB Streams
	Optimizing costs for Kinesis Data Streams
	Cost optimization strategies for both types of Streams usage

	Evaluate your provisioned capacity for right-sized provisioning in your DynamoDB table
	How to retrieve consumption metrics on your DynamoDB tables
	How to identify under-provisioned DynamoDB tables
	How to identify over-provisioned DynamoDB tables

	Conducting the Amazon DynamoDB Well-Architected Lens review
	The pillars of the Amazon DynamoDB Well-Architected Lens

	Best practices for designing and using partition keys effectively in DynamoDB
	Designing partition keys to distribute your workload in DynamoDB
	Using write sharding to distribute workloads evenly in your DynamoDB table
	Sharding using random suffixes
	Sharding using calculated suffixes

	Distributing write activity efficiently during data upload in DynamoDB

	Best practices for using sort keys to organize data in DynamoDB
	Using sort keys for version control

	Best practices for using secondary indexes in DynamoDB
	General guidelines for secondary indexes in DynamoDB
	Use indexes efficiently
	Choose projections carefully
	Optimize frequent queries to avoid fetches
	Be aware of item-collection size limits when creating local secondary indexes

	Take advantage of sparse indexes
	Examples of sparse indexes in DynamoDB

	Using Global Secondary Indexes for materialized aggregation queries in DynamoDB
	Overloading Global Secondary Indexes in DynamoDB
	Using Global Secondary Index write sharding for selective table queries in DynamoDB
	Pattern design
	Sharding strategy
	Querying the sharded GSI
	Parallel query execution considerations
	Code example

	Using Global Secondary Indexes to create an eventually consistent replica in DynamoDB

	Best practices for storing large items and attributes in DynamoDB
	Compressing large attribute values
	Vertical partitioning
	Storing large attribute values in Amazon S3

	Best practices for handling time series data in DynamoDB
	Design pattern for time series data
	Time series table examples

	Best practices for managing many-to-many relationships in DynamoDB tables
	Adjacency list design pattern
	Materialized graph pattern

	Best practices for querying and scanning data in DynamoDB
	Performance considerations for scans
	Avoiding sudden spikes in read activity
	Taking advantage of parallel scans
	Choosing TotalSegments

	Best practices for DynamoDB table design
	Using DynamoDB global tables
	Key facts about DynamoDB global table design
	Consistency modes

	Key facts about MREC
	Key facts about MRSC
	MREC DynamoDB global table use cases
	Write modes with DynamoDB global tables
	Write to any Region mode (no primary)
	Write to one Region (single primary)
	Write to your Region (mixed primary)

	Routing strategies in DynamoDB
	Client-driven request routing
	Compute-layer request routing
	Route 53 request routing
	Global Accelerator request routing

	Evacuation processes
	Evacuating a live Region
	Evacuating an offline Region

	Throughput capacity planning for DynamoDB global tables
	Preparation checklist for DynamoDB global tables
	Frequently Asked Questions (FAQ) for deploying global tables

	Conclusion and resources

	Best practices for managing the control plane in DynamoDB
	Best practices for using bulk data operations in DynamoDB
	Conditional batch update
	Code examples

	Efficient bulk operations
	Using the pattern

	Best practices for implementing version control in DynamoDB
	When to use this pattern
	Tradeoffs

	Pattern design
	Using the pattern

	Best practices for understanding your AWS billing and usage reports in DynamoDB
	Throughput Capacity
	Streams
	Storage
	Backup and Restore
	AWS Backup
	Export and Import

	Data Transfer
	CloudWatch Contributor Insights
	DynamoDB Accelerator (DAX)

	Migrating a DynamoDB table from one account to another
	Migrate a table using AWS Backup for cross-account backup and restore
	Step 1: Enable advanced features for DynamoDB and cross-account backup
	Step 2: Create a backup vault in the source account and target account
	Step 3: Create a DynamoDB table backup in the source account
	Step 4: Copy the DynamoDB table backup from the source account to the target account
	Step 5: Restore the DynamoDB table backup in the target account

	Migrate a table using export to S3 and import from S3
	Requesting a table export to Amazon S3
	Requesting a table import from Amazon S3
	Keeping tables in sync during migration

	Prescriptive guidance to integrate DAX with DynamoDB applications
	Evaluating the suitability of DAX for your use cases
	When and why to choose DAX
	When not to use DAX

	Configuring your DAX client
	Best practices

	Configuring your DAX cluster
	DAX pricing
	Item cache and query cache
	Selecting TTL setting for the caches
	Understand your data access patterns
	Evaluate your application's performance requirements
	Analyze cache eviction and memory usage
	Use metrics and monitoring to adjust TTL
	Consider business requirements and compliance
	Cache behavior if you set TTL to zero

	Caching multiple tables with a DAX cluster
	Considerations for using DAX with multiple tables

	Data replication in DAX and DynamoDB global tables
	DAX Region availability
	DAX caching behavior

	Sizing your DAX cluster
	Planning availability
	Planning write throughput
	Planning read throughput
	Planning dataset size
	Calculating approximate cluster capacity requirements
	Approximating cluster throughput capacity by node type
	Scaling write capacity in DAX clusters

	Deploying a cluster
	Configure networks
	Configure security
	Parameter group
	Maintenance window

	Managing cluster operations
	Scaling a cluster horizontally
	Horizontal scaling considerations

	Scaling a cluster vertically

	Monitoring DAX
	Scaling your DAX cluster using monitoring data

	Using DynamoDB with other AWS services
	Configuring AWS credentials using Amazon Cognito for DynamoDB
	Integrating with Amazon Redshift
	Cross-account integration considerations with CMK
	Required AWS KMS policies and permissions
	KMS key policy in the DynamoDB account
	IAM Policy for the Amazon Redshift role (in Amazon Redshift account)
	Trust relationship for the Amazon Redshift role
	DynamoDB Table policy (if using resource-based policies)

	Important considerations

	DynamoDB zero-ETL integration with Amazon Redshift
	Prerequisites before creating a DynamoDB zero-ETL integration with Amazon Redshift
	Limitations when using DynamoDB zero-ETL integrations with Amazon Redshift
	Creating a DynamoDB zero-ETL integration with Amazon Redshift
	Step 1: Configuring a source DynamoDB table
	Step 2: Creating an Amazon Redshift data warehouse
	Step 3: Creating a DynamoDB zero-ETL integration

	Viewing DynamoDB zero-ETL integrations with Amazon Redshift
	Deleting DynamoDB zero-ETL integrations with Amazon Redshift

	Loading data from DynamoDB into Amazon Redshift with the COPY command

	Processing DynamoDB data with Apache Hive on Amazon EMR
	Overview
	Tutorial: Working with Amazon DynamoDB and Apache Hive
	Before you begin
	Step 1: Create an Amazon EC2 key pair
	Step 2: Launch an Amazon EMR cluster
	Cluster log files and Amazon S3

	Step 3: Connect to the Leader node
	Step 4: Load data into HDFS
	Step 5: Copy data to DynamoDB
	Step 6: Query the data in the DynamoDB table
	Step 7: (Optional) clean up

	Creating an external table in Hive
	CREATE EXTERNAL TABLE syntax
	Data type mappings

	Processing HiveQL statements
	Monitoring and canceling jobs

	Querying data in DynamoDB
	Using aggregate functions
	Using the GROUP BY and HAVING clauses
	Joining two DynamoDB tables
	Joining tables from different sources

	Copying data to and from Amazon DynamoDB
	Copying data between DynamoDB and a native Hive table
	Copying data between DynamoDB and Amazon S3
	Copying data using the Hive default format
	Copying data with a user-specified format
	Copying data without a column mapping
	Viewing the data in Amazon S3

	Copying data between DynamoDB and HDFS
	Copying data using the Hive default format
	Copying data with a user-specified format
	Copying data without a column mapping
	Accessing the data in HDFS

	Using data compression
	Reading non-printable UTF-8 character data

	Performance tuning
	DynamoDB provisioned throughput
	Read capacity
	Write capacity

	Adjusting the mappers
	Increasing the number of mappers
	Decreasing the number of mappers

	Additional topics
	Retry duration
	Parallel data requests
	Process duration
	Request time

	Integrating DynamoDB with Amazon S3
	DynamoDB data import from Amazon S3: how it works
	Requesting a table import in DynamoDB
	Setting up IAM permissions
	Amazon S3 permissions
	AWS Key Management Service
	CloudWatch permissions

	Requesting an import using the the console
	Getting details about past imports in the the console
	Requesting an import using the AWS CLI
	Getting details about past imports in the AWS CLI

	Amazon S3 import formats for DynamoDB
	CSV
	DynamoDB Json
	Amazon Ion

	Import format quotas and validation
	Import quotas
	Validation errors
	API validation errors
	Data validation errors
	Configuration errors
	Validating source Amazon S3 objects
	Troubleshooting
	CloudWatch logs
	Missing the key pk in the item
	Target table exists
	The specified bucket does not exist

	Best practices for importing from Amazon S3 into DynamoDB
	Stay under the limit of 50,000 S3 objects
	Avoid excessively large S3 objects
	Randomize sorted data
	Compress data to keep the total S3 object size below the Regional limit
	Be aware of how item size impacts performance
	Consider importing without any Global Secondary Indexes

	DynamoDB data export to Amazon S3: how it works
	Requesting a table export in DynamoDB
	Prerequisites
	Requesting an export using the the console
	Getting details about past exports in the the console
	Requesting an export using the AWS CLI
	Getting details about past exports in the AWS CLI
	Requesting an export using the AWS SDK
	Getting details about past exports using the AWS SDK

	DynamoDB table export output format
	Full export output
	Manifest files
	The summary manifest
	The files manifest

	Data files
	DynamoDB JSON
	Amazon Ion

	Incremental export output
	Manifest files
	The summary manifest
	The files manifest

	Data files
	DynamoDB JSON
	Amazon Ion

	DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Prerequisites before creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Creating an integration
	Enabling compaction on target Amazon S3 tables

	Viewing CloudWatch metrics for integration

	DynamoDB zero-ETL integration with Amazon OpenSearch Service
	How it works
	Integrated create experience through the console
	Next steps
	Handling breaking changes to your index
	How it works
	Delete your index and reset the pipeline (pipeline-centric option)
	Recreate your index and reset the pipeline (index-centric option)
	Create a new index and sink (online option)
	Best practices for avoiding and debugging type conflicts

	Best practices for working with DynamoDB zero-ETL integration and OpenSearch Service
	Configuration
	Observability
	Scaling

	Integrating DynamoDB with Amazon EventBridge
	How it works
	Creating an integration through the console
	Next steps

	Integrating DynamoDB with Amazon Managed Streaming for Apache Kafka
	How it works
	Set up an integration between Amazon MSK and DynamoDB
	Next steps

	Best practices for integrating with DynamoDB
	Creating a snapshot in DynamoDB
	Capturing data change in DynamoDB

	Using generative AI with DynamoDB
	Generative AI use cases for DynamoDB
	Generative AI blogs for DynamoDB
	Leveraging DynamoDB Zero-ETL integration with OpenSearch Service

	Quotas and constraints for Amazon DynamoDB
	Performing quota management tasks in DynamoDB
	Accessing DynamoDB quotas
	Viewing current quotas in the console
	Viewing current quotas using the AWS CLI

	Requesting a quota increase in DynamoDB
	Quotas in Amazon DynamoDB
	Read/write throughput
	Throughput default quotas
	Increasing or decreasing throughput (for provisioned tables)
	Increasing provisioned throughput
	Decreasing provisioned throughput

	Reserved Capacity
	Tables
	Table size
	Maximum number of tables per account per region

	Global tables
	Secondary indexes
	Projected secondary index attributes
	DynamoDB Streams
	Simultaneous readers of a shard in DynamoDB Streams
	Maximum write capacity for a table with DynamoDB Streams enabled

	Import from Amazon S3
	Table export to Amazon S3
	Backup and restore
	Contributor Insights

	Constraints in Amazon DynamoDB
	Read/write capacity mode
	Capacity unit sizes (for provisioned tables)
	Request unit sizes (for on-demand tables)

	Secondary indexes
	Projected Secondary Index attributes per table

	Partition keys and sort keys
	Partition key length
	Partition key values
	Sort key length
	Sort key values

	Naming rules
	Table names and Secondary Index names
	Attribute names

	Data types
	String
	Number
	Binary

	Items
	Item size
	Item size for tables with Local Secondary Indexes

	Attributes
	Attribute name-value pairs per item
	Number of values in list, map, or set
	Attribute values
	Nested attribute depth

	Expression parameters
	Lengths
	Operators and operands
	Reserved words

	DynamoDB transactions
	DynamoDB Streams
	Simultaneous readers of a shard in DynamoDB Streams

	DynamoDB Accelerator (DAX)
	AWS Region availability
	Nodes
	Parameter groups
	Subnet groups

	API-specific constraints
	DynamoDB encryption at rest

	DynamoDB API reference
	Troubleshooting Amazon DynamoDB
	Troubleshooting internal server errors in Amazon DynamoDB
	Investigating internal server errors
	Minimizing the impact from internal server errors
	Improving operational awareness

	Troubleshooting latency issues in Amazon DynamoDB
	Troubleshooting throttling in Amazon DynamoDB
	Diagnosing throttling
	Understanding throttling exceptions
	Example exceptions
	Example 1: Provisioned capacity exceeded on a GSI
	Example 2: On-demand maximum throughput exceeded

	DynamoDB throttling diagnosis framework
	Step 1 - Analyze the ThrottlingReason details
	Step 2 - Identify and analyze the related CloudWatch metrics
	Step 3 - Identify your throttled keys and high access rates using CloudWatch Contributor Insights (for partition-related throttling)
	Step 4 - Determine the appropriate solution
	Step 5 - Monitor your progress

	DynamoDB throttling resolution guide
	Key range throughput exceeded (hot partitions)
	Provisioned throughput exceeded
	Account limits exceeded
	On-demand maximum throughput exceeded
	1- Key range throughput exceeded (hot partitions)
	Key range throughput exceeded mitigation measures
	TableReadKeyRangeThroughputExceeded
	TableWriteKeyRangeThroughputExceeded
	IndexReadKeyRangeThroughputExceeded
	IndexWriteKeyRangeThroughputExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Identifying hot keys using CloudWatch Contributor Insights
	Improving partition key design
	Optimizing GSI projections

	Additional resources

	2- Provisioned throughput exceeded
	Provisioned throughput exceeded mitigation measures
	TableReadProvisionedThroughputExceeded
	TableWriteProvisionedThroughputExceeded
	IndexReadProvisionedThroughputExceeded
	IndexWriteProvisionedThroughputExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Increasing table throughput capacity
	Configuring table Auto Scaling to adjust the read or write capacity of your table or GSI
	Optimizing your table's or index's read or write Auto Scaling settings
	Switching to on-demand capacity mode
	Increasing GSI throughput capacity

	Additional resources

	3- Account limits exceeded
	Account limit exceeded mitigation measures
	TableReadAccountLimitExceeded
	TableWriteAccountLimitExceeded
	IndexReadAccountLimitExceeded
	IndexWriteAccountLimitExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Requesting per-table quota increases
	Optimizing GSI projections and design

	4- On-demand maximum throughput exceeded
	On-demand maximum throughput exceeded throttling
	TableReadMaxOnDemandThroughputExceeded
	TableWriteMaxOnDemandThroughputExceeded
	IndexReadMaxOnDemandThroughputExceeded
	IndexWriteMaxOnDemandThroughputExceeded

	Common diagnosis and monitoring

	Understanding Global Secondary Index (GSI) write throttling and back pressure in DynamoDB
	Understanding GSI back-pressure throttling
	
	Types of GSI throttling

	CloudWatch throttling metrics

	DynamoDB Appendix
	Troubleshooting SSL/TLS connection establishment issues with DynamoDB
	Testing your application or service
	Testing your client browser
	Updating your software application client
	Updating your client browser
	Manually updating your certificate bundle

	Example tables and data for use in DynamoDB
	Sample data files
	ProductCatalog sample data
	Forum sample data
	Thread sample data
	Reply sample data

	Creating example tables and uploading data in DynamoDB
	Creating example tables and uploading data using the AWS SDK for Java
	Creating example tables and uploading data using the AWS SDK for .NET

	DynamoDB example application using the AWS SDK for Python (Boto): Tic-tac-toe
	Step 1: Deploy and test locally
	1.1: Download and install the required packages
	1.2: Test the game application

	Step 2: Examine the data model and implementation details
	2.1: Basic data model
	2.2: Application in action (code walkthrough)
	Home page
	Using getGameInvites to get the list of pending game invitations
	Using getGamesWithStatus to get the list of games with a specific status

	Game page

	Step 3: Deploy in production using the DynamoDB service
	3.1: Create an IAM role for Amazon EC2
	3.2: Create the games table in Amazon DynamoDB
	3.3: Bundle and deploy the tic-tac-toe application code
	3.4: Set up the AWS Elastic Beanstalk environment

	Step 4: Clean up resources

	Reserved words in DynamoDB
	AWS SDK for Java 1.x examples
	Using DAX with AWS SDK for Java 1.x
	Using the client as an Apache Maven dependency
	TryDax.java
	TryDaxHelper.java
	TryDaxTests.java

	Modifying an existing SDK for Java 1.x application to use DAX
	Using the DynamoDB document API
	DAX async client

	Querying global secondary indexes with SDK for Java 1.x

	AWS SDK for Go 1.x examples
	DAX SDK for Go

	AWS SDK for Node.js 2.x examples
	Node.js and DAX
	01-create-table.js
	02-write-data.js
	03-getitem-test.js
	04-query-test.js
	05-scan-test.js
	06-delete-table.js

	Document history for DynamoDB
	Earlier updates

	Legacy features of DynamoDB
	Global tables version 2017.11.29 (Legacy)
	Global tables: How it works
	Global table concepts for Version 2017.11.29 (Legacy)
	Common tasks
	Monitoring global tables
	Time To Live (TTL)
	Streams and transactions with global tables
	Read and write throughput
	Consistency and conflict resolution
	Availability and durability

	Best practices and requirements for managing global tables
	Global tables version
	Requirements for adding a new replica table
	Best practices and requirements for managing capacity
	Using DynamoDB auto scaling
	Managing capacity manually

	Creating a global table
	Creating a global table (console)
	Creating a global table (AWS CLI)

	Monitoring global tables
	Using IAM with global tables
	
	Example: Allow the CreateGlobalTable action
	Example: Allow the UpdateGlobalTable, DescribeLimits, application-autoscaling:DeleteScalingPolicy, and application-autoscaling:DeregisterScalableTarget actions
	Example: Allow the CreateGlobalTable action for a specific global table name with replicas allowed in certain regions only

	Previous low-level DynamoDB API version (2011-12-05)
	BatchGetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	BatchWriteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	CreateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DeleteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DeleteTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DescribeTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample Request
	Sample response

	Related actions

	GetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	ListTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	PutItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	Query
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response
	Sample request
	Sample response

	Related actions

	Scan
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response
	Sample request
	Sample response
	Sample request
	Sample response

	Related actions

	UpdateItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	UpdateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	Legacy DynamoDB conditional parameters
	AttributesToGet (legacy)
	Use ProjectionExpression instead – Example

	AttributeUpdates (legacy)
	Use UpdateExpression instead – Example

	ConditionalOperator (legacy)
	Expected (legacy)
	Use ConditionExpression instead – Example

	KeyConditions (legacy)
	Use KeyConditionExpression instead – Example

	QueryFilter (legacy)
	Use FilterExpression instead – Example

	ScanFilter (legacy)
	Use FilterExpression instead – Example

	Writing conditions with legacy parameters
	Simple conditions
	Comparison operators with no attribute values
	Comparison operators with one attribute value
	Comparison operators with two attribute values
	Comparison operators with n attribute values

	Using multiple conditions
	Other conditional operators

